Application Note
APPLICATION NOTE

AN_264
FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209

Issue Date: 2013-11-01

This document describes the operation of the Gradient Demo Application running on Visual Studio.
The Gradient example demonstrates the way in which the tracking features of the FT800 can be
used to manipulate graphics on the screen and produce visual effects. It displays a gradient object
which the user can then rotate and resize by dragging their finger on the screen. Two sliders at the
side of the screen can be used to change the colours at each end of the gradient.

Future Technology Devices International Limited (FTDI)

Unit 1,2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): supporti@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2013Future Technology Devices International Limited

"" Application Note
] FTDI AN_264 FT_App_Gradient

. Version 1.1
N\ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359
S\

Table of Contents

1 INtrodUcCtioN...cicccieeicsesessmsnssssnssnsnssnsnssnsnssnnnssnnnsnnnnnnnnnnnns 3

1.1 OVeIVIieW ..iiiiieeeeenssnssnnsssnnsnnnnnnns 3
3 ol o o 1 = e 3
2 Gradient OVerVIeWccieccevercasssssssssssssssssssssssnssnnnnsnnnnnnnnnns q

3 Design FIOW ..cccciiiiiiiismss s snsssssssssssnnssssnsssssnssnnnnnnnnnns 3

3.1 Initilisation....ccciiiiiii i v s rr s 5
3.2 Application FIOW.....cccciiiiiincnmsssssssssssssssssssssnssssssnsssssannnnnnnns 7
T S D 1= Y= o o ' 1 o o 1 o J 8
4.1 System Initialisationccciviciiiicimiicsmrss i s rra s s aas 8
4.2 Bootup Config...cuecrvemriemmnmriammsmssnnssanssnssanssnssanssanssnssanssnnsnnsnanssnnnns 8
T T T 11 1 1o 1 () 9
4.4 Gradient FUNCtiON......ccociiiiiri s s s e s n s r s n e 12
5 Running the demonstration code ...ccccemiiiiiiiiiiinccccinnnns 16
6 Contact Information......cciiccrviriirmnmsssmsesssanssansssnsssnnnnns 19
Appendix A- ReferencCesccuvverircmrrsssmrasssssssssanssssansssannns 20
Document References......cccvicrimriemmimrnmss s ssasssn s ssassanssnnssnssansnnnnas 20
Acronyms and Abbreviationsccciviernnrnnsnssssnss s ssse s nan s 20
Appendix B — List of Tables & Figurescuvccvvnmmrnsnnsnnannns 21
List Of FigUIresccuiiiiiieriemnsessssse s s s ssanssasssnssanssnnsanssansnnssnnsnnnnas 21
Appendix C— Revision Historycccciiiiiicimminsssnnssnnnnnnnnnss 22
2

Copyright © 2013 Future Technology Devices International Limited

,r',- Application Note
y FTDI AN_264 FT_App_Gradient

Version 1.1

A .
N\ ‘ th) Document Reference No.: FT_000209 Clearance No.: FTDI# 359
B

1 Introduction

This document describes the operation of the Gradient Demo Application running on Visual Studio.
The Gradient example demonstrates the way in which the tracking features can be used to
manipulate graphics on the screen and produce visual effects. Please refer to the sample code
project provided with this application note or at:

www.ftdichip.com/Support/SoftwareExamples/FT800_Projects.htm .

1.1 Overview

This application demonstrates the gradient feature and touch tracking/tagging features of the
FT800. It displays a colour gradient on the screen which the user can then rotate and resize by
dragging their finger on the screen. Two sliders at the side of the screen can be used to change
the colours at each end of the gradient.

This example demonstrates that in addition to providing an attractive graphical user interface for
an application, the FT800’s tracking and tagging features can be used to allow this to be
manipulated interactively by the user.

1.2 Scope

This document can be used by designers to develop GUI applications by using the FT800 with an
SPI host. In this case, a PC running Visual Studio (C++) with a C232HM cable is used as the SPI
master.

It covers the following topics:

Brief overview of the Gradient demonstration

Flow of the code project including the FT800 initialisation and gradient code
Description of the Gradient function within the application

Running the demonstration code

Additional documentation can be found at www.ftdichip.com/EVE.htm including:

FT800 datasheet
Programming Guide covering EVE command language
AN 240 FT800 From the Ground Up
AN 245 VM800CB SampleApp PC Introduction
Covering detailed design flow with a PC and USB to SPI bridge cable
e AN 246 VM800CB SampleApp Arduino Introduction
Covering detailed design flow in an Arduino platform
e AN 252 FT800 Audio Primer

Note: This document is intended to be used along with the source code project provided in section
4.4 or at : http://www.ftdichip.com/Support/SoftwareExamples/FT800 Projects.htm

Copyright © 2013 Future Technology Devices International Limited

http://www.ftdichip.com/EVE.htm
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT800.pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/FT800%20Programmers%20Guide.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_240%20FT800%20From%20the%20Ground%20Up.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_245%20VM800CB%20SampleApp%20PC%20Introduction.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_246%20VM800CB_SampleApp_Arduino_Introduction.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_252%20FT800%20Audio%20Primer.pdf
http://www.ftdichip.com/Support/SoftwareExamples/FT800_Projects.htm

=7 Application Note
o FTDI AN_264 FT_App_Gradient
a . Version 1.1
\\‘ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

2 Gradient Overview

The FT800 includes a Gradient command which uses the FT800’s internal graphics engine to
generate a colour gradient between two specified coordinates. The command specifies the starting
and ending coordinates and the colours at the starting and ending coordinates, and the FT800 will
calculate a smooth colour transition between these coordinates.

In this example, a gradient is drawn between two points on the screen. The user can then change
the gradient in two different ways:

- The user can select the colours at each end of the gradient. The colour values are taken
from two sliders which are positioned at the right-hand side of the screen. The application
assigns tags to these sliders so that the user can adjust the values using the touch screen.
The value of the slider is used to determine the colour of the associated end of the
gradient.

- A cross symbol is also drawn (using the Points and Lines primitives) to indicate the location
of the two points between which the gradient is drawn. A point drawn under each cross is
tagged so that the FT800 can identify touches in these areas. The user can drag these
points to change the starting and finishing position of the gradient bar.

Figure 2.1 The Gradient example application

As described in the following chapters, the SPI Master (in this case a PC running the sample
application with a USB to SPI cable) will be in a loop; constantly reading the information from the
touch screen/tag registers, calculating the new end-colours and position of the gradient bar, and
generating a co-processor command list to display the updated gradient.

Copyright © 2013 Future Technology Devices International Limited

.",- Application Note
y FTDI AN_264 FT_App_Gradient

L . Version 1.1
N\ (h |F) Document Reference No.: FT_000209 Clearance No.: FTDI# 359
B TR

3 Design Flow

3.1 Initilisation

Every EVE design follows the same basic principles as highlighted in Figure 3.1. After configuring
the SPI Host itself (such as the PC through the CM232H cable, or an MCU), the application will
wake up the FT800 and write to the registers in the FT800 to configure its display, touch and audio
settings etc. It then writes an initial display list to clear the screen.

The main application can then create display lists to draw the actual application screens, in this
case the gradient screen. In essence there will be two lists; the active list and the edited list which
are continually swapped to update the display. Each screen can be created by either writing a
display list to the RAM_DL memory in the FT800, or by writing a series of commands to the Co-
Processor FIFO in the FT800 (in which case, the Co-Processor will create a display list in RAM_DL
based on the commands). Note, header files map the pseudo code of the design file of the display
list to the FT800 instruction set, which is sent as the data of the SPI (or I2C) packet (typically
<1KB). As a result, with EVE's object oriented approach, the FT800 is operating as an SPI
peripheral while providing full display, audio, and touch capabilities.

Copyright © 2013 Future Technology Devices International Limited

FTDI
& Chip

Application Note

AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Select MCU

v

Select Display,
Audio & Touch

Configure MCU
Interface

v

Wake-up
FT800

v

Configure
Display

v

Configure
Touch and
Audio

v

Write Initial
Display List &
Enable Display

v

l]

11111

N

Write
Application r—
Display List
=
Swap Display C
LIsts

Hardware

SPI or 12C
GPIO for PD_n
Interrupt Input

Size = WQVGA, QVGA, up to 512 x 512
Resistive Touch
Audio Amplifier

Software

SPI Mode Zero -or- I2C Address
Set Host MCU SPI Speed to 10MHz maximum
Little Endian Data Format

Toggle PD_n low for 20ms min., then high

Write 0x00, 0x00, 0x00 to wake FT800

Write 0x44, 0x00, 0x00 to select Ext Clock

Write 0x62, 0x00, 0x00 to select 48MHz

Host MCU SPI Speed can now go up to 30MHz
REG_PCLK = zero until after display parameters are set

Set Screen Registers
Vertical — REG_VCYCLE, REG_VSIZE, REG_VSYNCO0/1, REG_VOFFSET
Horizontal — REG_HCYCLE, REG_HSIZE, REG_HSYNCO0/1, REG_HOFFSET

Set Touch Registers

REG_TOUCH_MODE, REG_TOUCH_RZTHRESH, Others if necessary
Set Audio Register

REG_VOL_SOUND = zero

CLEAR_COLOUR_RGB(0,0,0)

CLEAR(1,1,1)

DISPLAY

SWAP_LIST

REG_PWM_DUTY - brightness, PWM_HZ, frequency
REG_GPIO - bit 7 = 1 — DISP

REG_PCLK = LCD dot/pixel clock frequency

CLEAR_COLOUR_RGB(0,0,0)
CLEAR(1,1,1)

% APPLICATION DATA **
DISPLAY

SWAP_LIST

Figure 3.1 Generic EVE Design Flow

Copyright © 2013 Future Technology Devices International Limited

> —

) zmmn '\

n

=\

FTDI
Chip

Application Note

AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

3.2 Application Flow

Compute the
Background
Gradient

A 4

Set the BITMAP
Properties of the
Gradient

v

Set the TRACK for
the two color
changing slider

Initialization

Read
Touchscreen Co-
ordinates and
TAG

NO.

Istouch?

Is drag points?

Yes

Compute X and Y
Co-ordinates
from
REG_TOUCH_SCR
EEN_XY register

v

Yes

v

Compute the
Colors
Based on the
Slider

v

Assign the
Coordinates to
the associated

points

v

Figure 3.2 Application Flowchart

Construct

Apply to the
Gradient

No————»|

displaylist

Copyright © 2013 Future Technology Devices International Limited

,",- Application Note
y FTDI AN_264 FT_App_Gradient

\ . Version 1.1
N\ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

S N\

4 Description

This section describes the application code used to generate the menu displays.

4.1 System Initialisation

Configuration of the SPI master port is unique to each controller — different registers etc, but all
will require data to be sent Most Significant Bit (MSB) first with a little endian format.

The application uses the same initialisation process as the other application notes in this series.

4.2 Bootup Config

The function labelled Ft_BootupConfig in this project is generic to all applications and will start by
toggling the FT800 PD# pin to perform a power cycle.

/* Do a power cycle for safer side */
Ft Gpu Hal Powercycle (phost,FT TRUE) ;
Ft Gpu Hal Rd1l6 (phost,RAM G);

/* Set the clk to external clock */
Ft Gpu HostCommand (phost, FT GPU EXTERNAL OSC);
Ft Gpu Hal Sleep(10);

/* Switch PLL output to 48MHz */
Ft Gpu HostCommand (phost,FT GPU PLL 48M) ;
Ft Gpu Hal Sleep(10);

/* Do a core reset for safer side */
Ft Gpu HostCommand (phost,FT GPU CORE RESET) ;

/* Access address 0 to wake up the FT800 */
Ft Gpu HostCommand (phost,FT GPU ACTIVE M) ;

The internal PLL is then configured by setting the clock register and PLL to 48MHz. Note that
36MHz is possible but will have a knock on effect for the display timing parameters.

A software reset of the core is performed followed by a dummy read to address 0 to complete the
wake-up sequence.

The FT800 has its own GPIO lines which can be controlled by writing to registers. One of these is
connected to the display’s enable line and so a write to the FT800 GPIO allows the display to be
enabled.

Ft Gpu Hal Wr8(phost, REG GPIO DIR,0x80 | Ft Gpu Hal Rd8(phost,REG GPIO DIR));
Ft Gpu Hal Wr8 (phost, REG GPIO,0x080 | Ft Gpu Hal Rd8 (phost,REG GPIO));

To confirm that the FT800 is awake and ready to start accepting display list information, the
identity register is read continuously until it reports back 0x7C. This register will always read 0x7C
if the FT800 is awake and functioning correctly.

ft uint8 t chipid;
// Read Register ID to check if FT800 is ready.
chipid = Ft Gpu Hal Rd8 (phost, REG ID);
while (chipid != 0x7C)
chipid = Ft Gpu Hal Rd8 (phost, REG ID);

Once the FT800 is awake, the display settings may be configured by writing 13 of the registers
inside the FT800 to match the display being used. Resolution and timing data should be available
in the display datasheet.

Copyright © 2013 Future Technology Devices International Limited

,",- Application Note
v AN_264 FT_App_Gradient
A . Version 1.1
N\ Ch I p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Ft Gpu Hal Wrlé (phost, REG HCYCLE, FT DispHCycle);
Ft Gpu Hal Wrlé (phost, REG HOFFSET, FT DispHOffset);
Ft Gpu Hal Wrl6 (phost, REG HSYNCO, FT DispHSyncO);
Ft Gpu Hal Wrlé (phost, REG HSYNC1, FT DispHSyncl):;
Ft Gpu Hal Wrlé6 (phost, REG VCYCLE, FT DispVCycle);
Ft Gpu Hal Wrlé (phost, REG VOFFSET, FT DispVOffset);
Ft Gpu Hal Wrlé6 (phost, REG VSYNCO, FT DispVSyncO);
Ft Gpu Hal Wrlé (phost, REG VSYNC1, FT DispVSyncl):;
Ft Gpu Hal Wr8 (phost, REG SWIZZLE, FT DispSwizzle);
Ft Gpu Hal Wr8 (phost, REG PCLK POL, FT DispPCLKPol);
Ft Gpu Hal Wr8 (phost, REG PCLK,FT DispPCLK); // display visible on the LCD
Ft Gpu Hal Wrlé (phost, REG HSIZE, FT DispWidth);

Ft Gpu Hal Wrlé (phost, REG VSIZE, FT DispHeight);

The touch controller can also be configured by setting the resistance threshold.

/* Touch configuration - configure the resistance value to 1200 - this value is
specific to customer requirement and derived by experiment */
Ft Gpu Hal Wrl6(phost, REG TOUCH RZTHRESH,1200);

An optional step is present back in the main program to clear the screen so that no artefacts from
boot-up are displayed.

/*It is optional to clear the screen here*/
Ft Gpu Hal WrMem(phost, RAM DL, (ft uint8 t

*)FT DLCODE BOOTUP, sizeof (FT_DLCODE BOOTUP)) ;
Ft Gpu Hal Wr8(phost, REG DLSWAP, DLSWAP FRAME) ;

4.3 Info()

This function then provides the initial screens of the application.

A Co-Processor command list is started. The command will clear the display parameters.

Ft Gpu CoCmd Dlstart (phost);
Ft App WrCoCmd Buffer (phost,CLEAR(1,1,1));

The following commands set the colour and then print a text message to the user which tells them
to tap on the dots during the following calibration routine. The FT800’s built-in calibration routine
is then called.

Ft App WrCoCmd Buffer (phost, COLOR RGB (255,255,255));

Ft Gpu CoCmd Text (phost,FT DispWidth/2,FT DispHeight/2,26,0PT CENTERX|
OPT CENTERY, "Please tap on a dot");

Ft Gpu CoCmd Calibrate (phost,0);

The display list is then terminated and swapped to allow the changes to take effect.

Ft App WrCoCmd Buffer (phost,DISPLAY ()) ;
Ft Gpu CoCmd Swap (phost) ;

Ft App Flush Co Buffer (phost);

Ft Gpu Hal WaitCmdfifo empty (phost);

Copyright © 2013 Future Technology Devices International Limited

,/"" Application Note
y AN_264 FT_App_Gradient
A . Version 1.1
=\ Chlp Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Please tap on a dot

Figure 4.1 Calibration screen

Next up in the Info() function is the FTDI logo playback:

Ft Gpu CoCmd Logo (phost) ;
Ft App Flush Co Buffer (phost);
Ft Gpu Hal WaitCmdfifo empty (phost);

while (0!=Ft Gpu Hal Rd16 (phost,REG CMD READ)) ;
dloffset = Ft Gpu Hal Rd1l6 (phost,REG CMD DL);

dloffset -=4;

Ft Gpu Hal WrCmd32 (phost,CMD MEMCPY) ;
Ft Gpu Hal WrCmd32 (phost,100000L) ;

Ft Gpu Hal WrCmd32 (phost,RAM DL);

Ft Gpu Hal WrCmd32 (phost,dloffset);

play setup();

Figure 4.2 Logo screen

A composite image with the logo and a start arrow is then displayed to allow the user to start the
main application.

Once the ‘Click to play’ button has been tapped, the application will then call one of the three
menu functions, depending on which type has been defined.
do
{
Ft Gpu CoCmd Dlstart (phost);

10

Copyright © 2013 Future Technology Devices International Limited

& FTDI
@ Chip

Application Note
AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Ft Gpu CoCmd Append (phost,100000L,dloffset);

Ft App WrCoCmd Buffer (phost,BITMAP TRANSFORM A (256));
Ft App WrCoCmd Buffer (phost,BITMAP TRANSFORM A (256))

’

Ft_App_WrCoCmd_Buffer(phost,BITMAPiTRANSFORMiB(O));
Ft App WrCoCmd Buffer (phost,BITMAP TRANSFORM C(0));
Ft_App_WrCoCmd_Buffer(phost,BITMAPiTRANSFORMiD(O));
Ft App WrCoCmd Buffer (phost,BITMAP TRANSFORM E (256));
Ft_App_WrCoCmd_Buffer(phost,BITMAPiTRANSFORMiF(O));
Ft App WrCoCmd Buffer (phost, SAVE CONTEXT ()) ;

Ft App WrCoCmd Buffer (phost,COLOR RGB(219,180,150)) ;
Ft App WrCoCmd Buffer (phost,COLOR A(220));

Ft App WrCoCmd Buffer (phost,BEGIN(EDGE STRIP A));

Ft App WrCoCmd Buffer (phost, VERTEX2F (0,FT DispHeight*16));

Ft App WrCoCmd Buffer (phost, VERTEX2F (FT_DispWidth*16,FT DispHeight*16));
Ft App WrCoCmd Buffer (phost,COLOR A (255));

Ft App WrCoCmd Buffer (phost,RESTORE CONTEXT ()) ;
Ft App WrCoCmd Buffer (phost,COLOR RGB(0,0,0));

// INFORMATION

Ft Gpu CoCmd Text (phost,FT DispWidth/2,20,28,0PT CENTERX|OPT CENTERY,info[0])
Ft Gpu CoCmd Text (phost, FT DispWidth/2,60,26,0PT CENTERX|OPT CENTERY,info[1])
Ft Gpu CoCmd Text (phost,FT DispWidth/2,90,26,0PT CENTERX|OPT CENTERY,info[2]);
Ft Gpu CoCmd Text (phost,FT DispWidth/2,120,26,0PT CENTERX|OPT CENTERY, info[3]

’

’

)7

Ft Gpu CoCmd Text (phost,FT DispWidth/2,FT DispHeight-30,26,0PT CENTERX
|OPT CENTERY,"Click to play");

if(sk!="P")

Ft App WrCoCmd Buffer (phost, COLOR RGB (255,255,255));

else

Ft App WrCoCmd Buffer (phost, COLOR RGB(100,100,100));

Ft_App_WrCoCmd_Buffer(phost,BEGIN(FTPOINTS));

Ft App WrCoCmd Buffer (phost, POINT SIZE (20*16));

Ft App WrCoCmd Buffer (phost,TAG('P'));

Ft App WrCoCmd Buffer (phost, VERTEX2F ((FT_DispWidth/2) *16,
(FT DispHeight-60)*16));

Ft App WrCoCmd Buffer (phost,COLOR RGB(180,35,35));

Ft_App_WrCoCmd_Buffer(phost,BEGIN(BITMAPS));

Ft App WrCoCmd Buffer (phost, VERTEX2II ((FT_DispWidth/2) -
14, (FT DispHeight-75),14,0));

Ft App WrCoCmd Buffer (phost,DISPLAY()) ;

Ft Gpu CoCmd Swap (phost) ;

Ft App Flush Co Buffer (phost);

Ft Gpu Hal WaitCmdfifo empty (phost);

}
while (Read Keys()!='P');

Figure 4.3 Start screen

Copyright © 2013 Future Technology Devices International Limited

11

.r',— Application Note
y FTDI AN_264 FT_App_Gradient

\ . Version 1.1
N\ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

SN\

4.4 Gradient Function

This is the main function in which the application will now remain. After an initial display/co-
processor list which defines the background and tracker settings, the code will sit in a continuous
loop where it will:

e Check the tracking and Tag registers and calculate the gradient’s position and start/end
colours for this particular frame

Draw the background, and clear an area with the scissor functions

Draw two sliders with their current positions defined by the values calculated above

Add the text labels C1 and C2 above the sliders

Draw the gradient with a tagged area at the start and finishing coordinates defined above
Send the command buffer generated by the above steps to the FT800 and wait for it to be
executed

ft void t Gradient()
{
ft uint32 t Read xy = 0, tracker;
ft uintlée t x1,x2,yl,y2, Read x = 0, Read y = 0, vall=48568, val2=32765,
tx = 48, ty = 20, tval;
ft uint8 t Read Tag = 0,drag, buff[512];

xl = 50;yl = 50;

x2 = FT DispWidth-60;
y2 = FT DispHeight-40;
drag = 0;

This loop creates a bitmap which will be the background. It represents a single pixel column on the
display (1 wide by FT_DispHeight high). This takes the form of a symmetrical fading effect. The
repeat command will be used later when drawing the bitmap on the screen so that the single
column gets repeated over the full screen width.

for (tval=0;tval<(FT DispHeight/2);tval++)
{
buff [FT DispHeight-1-tval] = buff[tval] = (tval*0.9);
}
Ft Gpu Hal WrMem (phost,4096L,buff,FT DispHeight);

The code below creates a display list to set the background for the gradient screen.

It displays the bitmap which was created above. The REPEAT parameter causes the single column
to be repeated in the X direction until [FT_DispWidth].It also sets the tracker properties for the
two sliders using the Ft_Gpu_CoCmd_Track functions, with Tag values 3 and 4 being associated
with these sliders.

The display list ends as always with the DISPLAY command. The application builds a buffer of
display list commands and the Ft_App_Flush_DL_Buffer then causes this buffer to be sent over SPI
to the FT800.

A write to the DLSWAP register in the FT800 then causes the FT800 to swap the display lists so
that the list which has just been written becomes the current one and is displayed on the screen.
After executing any Co-Processor commands, the application should wait until REG_CMD_WRITE
and REG_CMD_READ registers become equal before sending any further commands to the FT800.
This ensures that the previous command buffer has been executed.

12

Copyright © 2013 Future Technology Devices International Limited

& FTDI
& Chip

"f‘ «-.~

Application Note
AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Ft DIBuffer Index = 0;
Ft App WrDlCmd Buffer (phost,CLEAR(1,1,1));
Ft App WrDl1Cmd Buffer (phost,COLOR A(255));

Ft App WrDlCmd Buffer (phost,BITMAP HANDLE (2));

(
Ft App WrDlCmd Buffer (phost,BITMAP SOURCE (4096L));

(
(
Ft App WrDlCmd Buffer (phost, COLOR RGB (255,255,255));
(
(
(

Ft App WrDlCmd Buffer (phost,BITMAP LAYOUT (L8,1,FT DispHeight));

Ft App WrDlCmd Buffer (phost,BITMAP SIZE (NEAREST,

FT DispWidth, FT DispHeight));

REPEAT,

BORDER,

Ft Gpu CoCmd Track (phost, (FT DispWidth-38),40,8,FT DispHeight-65,3);
Ft Gpu CoCmd Track (phost, (FT DispWidth-15),40,8,FT DispHeight-65,4);

Ft App WrD1Cmd Buffer (phost,DISPLAY()) ;
Ft App Flush DL Buffer (phost);

Ft Gpu Hal Wr8 (phost,REG DLSWAP,DLSWAP FRAME) ;

Ft Gpu Hal WaitCmdfifo empty (phost) ;

The application then enters a continuous loop where it checks the X and Y coordinates of a touch
and also the tag register. Tags 1 and 2 will be used for the dragging points whilst tags 3 and 4 are

used for the sliders.

Read xy = Ft Gpu Hal Rd32 (phost,REG TOUCH SCREEN XY);
Read Tag = Ft Gpu Hal Rd8 (phost,REG TOUCH TAG) ;

Read y = Read xy & Oxffff;

Read x = (Read xy >> 16) & Oxffff;

if (Read xy == 0x80008000) drag = 0;

else if(Read_Tag== || Read Tag==2)drag =

if (drag == 1)
{
if (Read x>=(FT DispWidth-60))0; else
if (Read y>=(FT DispHeight-20))0; else
}
if (drag == 2)
{
if (Read x>=(FT DispWidth-60))0; else
if (Read y>=(FT_DispHeight-20))0; else

tracker = Ft Gpu Hal Rd32 (phost,REG _TRACKER) ;

if ((tracker&Oxff) > 2)

{ if ((tracker&Oxff)==3)
{vall = (tracker>>106);
;lse if ((tracker&Oxff)==4)
{va12 = (tracker>>106);

}

The main co-processor command list is now created.

// 8000 means no touch

Read Tag;

x1l = Read x;
yl = Read y;
x2 = Read x;
y2 = Read y;

First of all, the background is created by clearing the screen and drawing the bitmap image which
was created earlier on. The bitmap was given a handle of 2 when it was created earlier.

13

Copyright © 2013 Future Technology Devices International Limited

,",- Application Note
y FTDI AN_264 FT_App_Gradient

\ . Version 1.1
N\ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Ft Gpu CoCmd Dlstart (phost);

Ft App WrCoCmd Buffer (phost,CLEAR COLOR RGB(55,55,55));
Ft App WrCoCmd Buffer (phost,CLEAR(1,1,1));

Ft App WrCoCmd Buffer (phost, BEGIN(BITMAPS)) ;

Ft App WrCoCmd Buffer (phost, VERTEX2II(0,0,2,0));

Ft Gpu CoCmd FgColor (phost, Oxffffff);

The following commands then put two sliders on the screen. Tagging is enabled and the sliders are
associated with Tag 3 and 4.

Ft App WrCoCmd Buffer (phost, TAG MASK(1));

Ft Gpu CoCmd BgColor (phost,val2*255) ;

Ft App WrCoCmd Buffer (phost,TAG(4));

Ft Gpu CoCmd Slider (phost, (FT DispWidth-15),40,8, (FT DispHeight
-65),0,val2,65535);

Ft Gpu CoCmd BgColor (phost,vall*255) ;

Ft App WrCoCmd Buffer (phost,TAG(3))

Ft Gpu CoCmd Slider (phost, (FT DispWidth-38),40,8, (FT DispHeight
-65),0,vall, 65535);

Ft App WrCoCmd Buffer (phost, TAG MASK(0)) ;

Now, the text ‘C1’ and C2' is displayed on the screen. The COLOR_RGB before this sets the colour
to white. The scissor command is then used to select the area where the gradient will be drawn
and this is then cleared. This leaves only a border of the original background under the sliders etc.
The following command then draws a gradient between the two current coordinate values, which
have been calculated by the Tracking routine earlier on.

Ft App WrCoCmd Buffer (phost,COLOR RGB(255,255,255));
Ft Gpu CoCmd Text (phost,FT DispWidth-45,10,26,0,"C1");
Ft Gpu CoCmd Text (phost,FT DispWidth-20,10,26,0,"C2");

Ft App WrCoCmd Buffer (phost, SCISSOR XY (0,10));
Ft App WrCoCmd Buffer (phost,SCISSOR SIZE (FT DispWidth-50,FT DispHeight-30));
Ft App WrCoCmd Buffer (phost,CLEAR(1,1,1));

Ft Gpu CoCmd Gradient (phost,x1,yl,vall*255,x2,y2,val2*255);

Now that the gradient has been drawn, the two tracking areas must be defined, which indicate the
points at which the user can drag the gradient shape. Each of the two tagged areas are drawn as a
point. The color mask is set to 0/0/0/0 so that the two points drawn here are actually invisible as
they do not affect the red/green/blue/alpha properties of the display. The subsequent steps will
place a small black circle with white cross which will be visible, but the larger point created here
will be the item which is tagged and is larger so that the user can drag it more easily.

Ft App WrCoCmd Buffer (phost, COLOR RGB(0,0,0));
Ft_App_WrCoCmd_Buffer(phost,BEGIN(FTPOINTS));
Ft App WrCoCmd Buffer (phost, COLOR MASK(0,0,0,0));
Ft App WrCoCmd Buffer (phost, POINT SIZE (10*16));
Ft App WrCoCmd Buffer (phost, TAG MASK(1)) ;
Ft App WrCoCmd Buffer (phost,TAG(1))

Ft App WrCoCmd Buffer (phost, VERTEX2F (x1*16,y1*16));
Ft App WrCoCmd Buffer (phost,TAG(2)) ;

Ft App WrCoCmd Buffer (phost, VERTEX2F (x2*16,y2*16)) ;
Ft App WrCoCmd Buffer (phost, TAG MASK(0)) ;

14

Copyright © 2013 Future Technology Devices International Limited

,",- Application Note
y FTDI AN_264 FT_App_Gradient

\ . Version 1.1
N\ Ch | p Document Reference No.: FT_000209 Clearance No.: FTDI# 359

S N\

The tag is now masked so that the following items will not be tagged. The color mask is set so that
subsequent drawing operations will be visible again. Now, a small black point is drawn at each of
the coordinates. A white cross is subsequently placed on top of the black circle.

Ft App WrCoCmd Buffer (phost,COLOR MASK(1,1,1,1));
Ft_App_WrCoCmd_Buffer(phost,POINT_SIZE(5*l6));

Ft App WrCoCmd Buffer (phost, BEGIN (FTPOINTS)) ;

Ft App WrCoCmd Buffer (phost, VERTEX2F (x1*16,y1*16));
Ft App WrCoCmd Buffer (phost, VERTEX2F (x2*16,y2*16)) ;

Ft App WrCoCmd Buffer (phost, COLOR MASK(1,1,1,1));
Ft App WrCoCmd Buffer (phost,COLOR RGB (255,255,255));
Ft App WrCoCmd Buffer (phost,BEGIN(LINES)) ;

(

(

(
Ft App WrCoCmd Buffer (phost, VERTEX2F ((x1-5)*16, (yl1)*16));
Ft_App_WrCoCmd_Buffer(phost,VERTEXZF((x1+5)*16 (yl)*16));
Ft App WrCoCmd Buffer (phost, VERTEX2F ((x1)*16, (y1-5)*16));
Ft App WrCoCmd Buffer (phost, VERTEX2F ((x1)*16, (y1+5)*16));
Ft_App_WrCoCmd_Buffer(phost,VERTEXZF((x2 5)*16, (y2)*16));
Ft_App_WrCoCmd_Buffer(phost,VERTEX2F((x2+5)*16 (y2)*16));
Ft_App_WrCoCmd_Buffer(phost,VERTEXZF((2)*16, (y2-5)*16));
Ft App WrCoCmd Buffer (phost, VERTEX2F ((x2)*16, (y2+5)*16));

The co-processor list is completed in the usual manner with a DISPLAY command and Swap.

The Co-processor buffer created above within the PC's memory is now sent to the FT800, and the
CMD_WRITE register updated to the end of this new command sequence, within the
Ft_App_Flush_Co_Buffer function. Finally, the program waits until the FT800 confirms that it has
completed executing the command list by waiting until CMD_WRITE equals CMD_READ.

Ft App WrCoCmd Buffer (phost,END());

Ft App WrCoCmd Buffer (phost,DISPLAY ()) ;

Ft Gpu CoCmd Swap (phost) ;

Ft App Flush Co Buffer (phost);

Ft Gpu Hal WaitCmdfifo empty (phost);
}while (1) ;

15

Copyright © 2013 Future Technology Devices International Limited

/"" Application Note
y AN_264 FT_App_Gradient
A . Version 1.1

=\ Chlp Document Reference No.: FT_000209 Clearance No.: FTDI# 359

5 Running the demonstration code

This example is shown here when running on a PC with Visual Studio (C++) installed. The FT800
development module (VM800B/VM800C) is connected to the PC using the C232HM cable which
acts as a USB to SPI converter.

SCK ORANGE
MOSI
MISO GREEN
CS# BROWN
PD# BLUE
GND BLACK
Table 1 CM232H Connections to the VM800 pins

The code can now be compiled and run. The debug button can be used to start the application.

M Ft_App_Gradient - Microsoft Visual Studio Express 2012 for Windows Desktop Quick Launch (Ctrl+Q) p - B x
EHLE EDIT MEW PROJECT BUILD DEBUG TEAM TOOLS TEST WINDOW HELP
0 o W P Local Windows Debugger ~ Debug - Win32 - 6. @ 2ol =l = | -
E Ft_App_Gradient.c @ X ~ Solution Explorer > o x
g (Global Scope) - - @ e-eai@m
e A " =
-E:S;Edf\:&;ifg?' T Scarch Solution Explorer (Ctrl+; J -
#include <stdio.h> &1 Solution 'Ft_App_Gradient' (L &
#::m.:luda <string.h> 4 %] Ft_App_Gradient
#include <nath.hs| b &2 External Dependencies
#include <windows.h> b o Header Files

#include <io.h>

#include <direct.h> 9 Resource Files

sendif 4 & Source Files

b *+ Ft_App_Gradient.c
#define SAMAPP_DELAY_BTH_APIS (1608) b ++ FT CoPro Crmdsc ™
#define SAMAPP_ENABLE DELAY() Ft_Gpu Hal Sleep(SAMARP_DELAY BTW_APIS) 1 d

#define SAMAPP_ENABLE DELAY VALUE(x) Ft_Gpu_Hal Sleep(x)
#define F16(s) ((fr_int32_t)((s) * 65536))
#define WRITE2CMD(a) Ft_Gpu_Hal_WrCmdBuf(phost,a,sizeof(a))

Properties > o x

E3ES

/* Global variables for display resclution to suppert various display panels ¥/
/* Default is WQVGA - 48@x272 */

FT_Disphiidth = 488;

FT_DispHeight = 272;

FT_DispHCycle = 548;

ft t FT DispHOffset = 43; hd
100 %
Output 1 x
Show output from: Debua = £

Error List | Qutput

Figure 4 Visual Studio screenshot

When running the application, the calibration screen will be displayed first. This uses the FT800’s
built-in calibration routine. It ensures that the FT800 can align inputs from the touch panel to the
image on the screen below accurately. The routine will display a dot and ask the user to tap on
this dot. It will then repeat this twice more (with the dot at a different location on the screen in
each case).

16

Copyright © 2013 Future Technology Devices International Limited

Application Note

7

= FTDI AN_264 FT_App_Gradient
a . Version 1.1

N\ Chlp Document Reference No.: FT_000209 Clearance No.: FTDI# 359
T TR

Please tap on a dot

Figure 5.5 Calibration screen

The FTDI logo animation will then appear on the screen (not shown here).

The Gradient introduction screen is then displayed and the application waits for the ‘Click to play’
button to be pressed, before loading the gradient screen.

Figure 5.6 Introduction screen

The main gradient screen will now be displayed. Initially, the display will appear as shown below.

Figure 5.7 Initial gradient screen

Copyright © 2013 Future Technology Devices International Limited

17

,/"'- Application Note
y AN_264 FT_App_Gradient
A . Version 1.1
=\ Chlp Document Reference No.: FT_000209 Clearance No.: FTDI# 359

The gradient can be re-sized and rotated by touching one of the two cursor points (marked with a
white cross) and then dragging this point to the new position. The gradient is re-drawn
continuously (each time a new co-processor list is sent to the FT800) and so appears to smoothly
follow the movement of the dragging motion. The screenshot below shows that each of the points
have been dragged in to produce a narrower gradient. By dragging one of the points around the
screen, the gradient rectangle will also rotate around the other point.

i

.
Figure 5.8 Gradient dragged into a narrower shape

Adjusting the sliders on the right-hand side will allow the colours at which the gradient starts and
finishes to be changed. In the example below, the sliders have selected red and light-blue. The
slider bar itself also indicates the colour selected.

Figure 5.9 Gradient with different colours

18

Copyright © 2013 Future Technology Devices International Limited

4 FTDI
=N Chlp

Application Note
AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

6 Contact Information
Head Office - Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH

United Kingdom

Tel: +44 (0) 141 429 2777

Fax: +44 (0) 141 429 2758

E-mail (Sales) salesl@ftdichip.com
E-mail (Support) supportl@ftdichip.com
E-mail (General Enquiries) adminl@ftdichip.com

Branch Office — Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)

2F, No. 516, Sec. 1, NeiHu Road

Taipei 114

Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570

Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.supportl @ftdichip.com

E-mail (General Enquiries) tw.admin1@ftdichip.com

Web Site

http://ftdichip.com

Branch Office - Tigard, Oregon, USA

Future Technology Devices International Limited
(USA)

7130 SW Fir Loop

Tigard, OR 97223-8160

USA

Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

us.sales@ftdichip.com
us.support@ftdichip.com
us.admin@ftdichip.com

E-Mail (Sales)
E-Mail (Support)
E-Mail (General Enquiries)

Branch Office — Shanghai, China

Future Technology Devices International Limited
(China)

Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052

China

Tel: +86 21 62351596

Fax: +86 21 62351595

cn.sales@ftdichip.com
cn.support@ftdichip.com
cn.admin@ftdichip.com

E-mail (Sales)
E-mail (Support)
E-mail (General Enquiries)

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales

representative(s) in your country.

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology
Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level
performance requirements. All application-related information in this document (including application descriptions, suggested
FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this
information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications
assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from
such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is
implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product
described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent
of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,
Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

19

Copyright © 2013 Future Technology Devices International Limited

mailto:cn.sales@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:admin1@ftdichip.com
http://sharepoint.ftdi.local/documents/Documents%20for%20Review/User_and_Programming_Guides/DS_VMFT800C%20EVE.doc
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/Support/SoftwareExamples/MPSSE/LibMPSSE-SPI.htm
mailto:us.support@ftdichip.com
mailto:sales1@ftdichip.com
http://www.ftdichip.com/FTProducts.htm
mailto:cn.support@ftdichip.com
mailto:tw.sales1@ftdichip.com
http://ftdichip.com/
mailto:us.admin@ftdichip.com

Application Note
AN_264 FT_App_Gradient

Version 1.1
Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Appendix A- References

Document References

pPLUbE

Datasheet for VM800C

Datasheet for VM800B

FT800 programmer guide FT_000793.

FT800 Embedded Video Engine Datasheet FT_000792

Acronyms and Abbreviations

Terms Description

Arduino Pro The open source platform variety based on ATMEL's ATMEGA chipset
EVE Embedded Video Engine

SPI Serial Peripheral Interface

Ul User Interface

usB Universal Serial Bus

Copyright © 2013 Future Technology Devices International Limited

20

Application Note

AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Appendix B - List of Tables & Figures

List of Figures

Figure 2.1 The Gradient example applicationcccccviciiicimicinicsrrcsrre s s s s s s rre s s s ra s nas 4
Figure 3.1 Generic EVE Design FIOWcccciiiiiiiiiei i i i i i snm s s snmnnnnns 6
Figure 3.2 Application Flowchart........cciciiiiiiiinmsmrsrs s s sneresne s snssnssnasnasnansnnnas 7
Figure 4.1 Calibration SCreenciicciiiiri i rasrasrasrasrassrassrassrassrssssanssanssanssnnnsnnnnnnns 10
FIGQUIe 4.2 LOGO SCIEEIN cuuumrurierarierassasassasassassssassssesssssssssssssssssssassssssassssansnsansnsansasansnss 10
Figure 4.3 Start SCreen....icciiiiiiiii i i tra i ra s s s s ra s sra s srassaassranssanssanssansrnnsrnnes 11
Figure 4 Visual Studio screenshot.........ccccciiiiiiiiis i i ir s srs s srs s srs s sra s snn s snassnnnsnnnss 16
Figure 5.5 Calibration SCreenccciciiiiiiiiiirsirsie s s sm s s s nnmsanunss 17
Figure 5.6 INtroduction SCreeN ...iiiiiic i i i trastras s srassrassrassrassssasssanssanssnnssnnsnnnnnnnes 17
Figure 5.7 Initial gradient screencccvciiiirissrs s 17
Figure 5.8 Gradient dragged into a narrower shapecvciveriri i i s s s s nnnss 18
Figure 5.9 Gradient with different colours......cccciiiiiiisiiic s i s s s e 18
21

Copyright © 2013 Future Technology Devices International Limited

4 FTDI
=N Chlp

Application Note

AN_264 FT_App_Gradient

Version 1.1

Document Reference No.: FT_000209 Clearance No.: FTDI# 359

Appendix C- Revision History

Document Title:

AN_264 FT_App_Gradient

Document Reference No.: FT_000209

Clearance No.:

Product Page:

FTDI# 359

http://www.ftdichip.com/EVE.htm

Document Feedback: Send Feedback
Revision Changes Date
0.1 Initial draft release 2013-07-18
1.0 Version 1.0 updated wrt review comments 2013-08-21
1.1 Version 1.1 2013-11-01

Copyright © 2013 Future Technology Devices International Limited

22

http://www.ftdichip.com/EVE.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_264%20Version%201.1

