This technical note explains the basics of the Camera Parallel Interface, a feature of FTDI MCUs.
Table of Contents

1 Introduction ... 2

2 Camera Parallel Interface .. 3
 2.1 Signals .. 3
 2.1.1 I²C Control Signals .. 3
 2.1.2 Parallel Data Signals .. 4
 2.2 Typical Interconnect ... 5
 2.3 Data Format .. 6
 2.4 Other Image Sensor and Camera Interfaces .. 7

3 Typical Applications .. 8

4 What FTDI Offer .. 9

5 Contact Information ... 10

Appendix A – References .. 11
 Document References .. 11
 Acronyms and Abbreviations .. 11

Appendix B – List of Tables & Figures ... 12
 List of Tables .. 12
 List of Figures ... 12

Appendix C – Revision History .. 13
1 Introduction

Many embedded systems benefit from the use of a camera. An embedded camera is typically comprised of three parts: lens assembly, image sensor(s) and the digital interface.

Over the years, the MIPI Alliance have specified successive camera digital interfaces: Camera Parallel Interface (CPI), Camera Serial Interface 1 (CSI-1), Camera Serial Interface 2 (CSI-2), and Camera Serial Interface 3 (CSI-3). This technical note focuses on the CPI.

Although the MIPI Alliance (www.mipi.org) claims there is no acronym associated with "MIPI", it is often referred to as the "Mobile Industry Processor Interface".

The MIPI Specification is a set of standards adopted by the MIPI Alliance for various mobile product functions.

2 Camera Parallel Interface

An image sensor captures images at a particular rate and makes the corresponding data available through one of several digital interfaces. Shown here is the OmniVision OV7675 VGA sensor:

![Figure 2.1 - Typical Image Sensor](image)

Image sensors are coupled with a lens to become a camera module. The camera modules can then be mounted in an assembly.

Shown here is the OmniVision OVM7692 CameraCubeChip™ – a complete camera module with the Camera Parallel Interface:

![Figure 2.2 - Typical Camera Module](image)

The CPI is one of the original image sensor interfaces specified by the MIPI Alliance. It consists of two portions: an I²C bus to control the interface and a parallel bus for the image data itself.

2.1 Signals

2.1.1 I²C Control Signals

The I²C bus is used in many applications, such as a personal computer System Management Bus to identify and control various features of the system. It is also used for monitoring and control of different devices. In this case, the I²C bus is used to control the various registers of the camera module.

The I²C bus consists of two signals: SDA (data) and SCK (clock). The I²C signals are connected in a daisy-chain multi-drop configuration. An MCU provides the I²C master used to communicate with the camera configuration interface. The typical interface voltage of a camera module is 1.5V to 2.8V. Each signal is driven in an open-drain configuration where only logic zeroes are transmitted. A logic 1 relies on the pull-up resistor on the bus. Multiple devices can be connected to a single bus in a daisy-chain, multi-drop configuration.
A common 7-bit or 10-bit addressing scheme is used by the I²C master to identify and select a particular I²C slave for communication.

![I²C connection diagram](image.png)

Figure 2.3 - Typical I²C connection

2.1.2 Parallel Data Signals

An 8-bit parallel link connects to the video data bus from an image sensor. The sensor also provides Vertical SYNC (VSYNC), Horizontal Reference (HREF) and Pixel clock (PCLK) timing signals. The parallel interface is unidirectional. All parallel signals are transmitted by the camera module and received by the controlling MCU.

Image data is output for each rising edge of PCLK. HREF is high while clocking out active image data for each scan line. VSYNC is pulsed high at the start of each frame. Refer to the camera module datasheet for timing specifications for these signals.

![I²C signaling](image.png)

Figure 2.4 - I²C signaling
2.2 Typical Interconnect

Both I2C and parallel portions of the CPI will connect to a MCU that supports the interface (SDA, SCL, D7:0, PCLK, VSYNC, and HREF). The voltage levels required at each end of the interface may indicate the need for level shifters. The image below shows the connections.
The MCP, MCN, MDP and MDN signals are not used in the case of the CPI. SIOC and SIOD are the I^2C SCL and SDA, respectively.

2.3 Data Format

There are several ways that camera modules format the data. One common method is to output the data in a packed pixel 2-byte format. RGB565 (16-bit) and RGB555 (15-bit) modes are shown here:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Byte</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB565</td>
<td>First</td>
<td>R4</td>
<td>R3</td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
<td>G5</td>
<td>G4</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>G2</td>
<td>G1</td>
<td>G0</td>
<td>B4</td>
<td>B2</td>
<td>B2</td>
<td>B1</td>
<td>B0</td>
</tr>
<tr>
<td>RGB555</td>
<td>First</td>
<td>X</td>
<td>R4</td>
<td>R3</td>
<td>R2</td>
<td>R1</td>
<td>R0</td>
<td>G4</td>
<td>G3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>G2</td>
<td>G1</td>
<td>G0</td>
<td>B4</td>
<td>B2</td>
<td>B2</td>
<td>B1</td>
<td>B0</td>
</tr>
</tbody>
</table>

Table 2.1 - Color Encoding on Pixel Data

Each image point takes two clocks to send the full pixel data to the MCU. For 16-bit encoding, 65,536 colors can be represented. For 15-bit encoding, 32,768 colors can be represented.

Other formats may be available as well. Some only require one byte per pixel; however, the color depth will be limited. YUV422 is one of these formats. Data information is conveyed in luminance and chrominance rather than direct red, green and blue.

2.4 Frame rates

A single scan of a frame can take a snapshot or still image. When looking at streaming video, the frame rate becomes important. A full frame consists of the entire image including the leading and
trailing sections beyond the active image area – the “front porch” and “back porch” in analog video terminology. Referring to Figure 2.5, the overall frame is 656x492 for the 640x480 image. Each pixel takes two PCLK cycles – one for each byte – so the number of pixel clocks to capture a full frame is:

\[
656 \text{ (horizontal)} \times 492 \text{ (vertical)} \times \frac{2 \text{ bytes}}{\text{pixel}} = 645504 \text{ PCLK cycles per frame}
\]

For a theoretical maximum PCLK rate of 25MHz, the maximum number of frames per second is:

\[
\frac{25 \text{ MHz}}{645504 \text{ PCLK per frame}} = 38.7 \text{ frames per second (fps)}
\]

In generic terms:

\[
\text{Theoretical Frame Rate} = \frac{\text{Maximum supported PCLK}}{\text{Horizontal size} \times \text{Vertical size} \times \frac{\text{Bytes}}{\text{pixel}}}
\]

In practice, the actual frame rate is usually slower due to the MCU processing of the incoming data.

2.5 Other Image Sensor and Camera Interfaces

The CPI is not unlike a parallel LCD interface. Both have a pixel clock, pixel data, and horizontal and vertical reference signals. Data direction is the primary difference. The image sensor/camera module sends data to the MCU while the LCD displays data from the MCU (or video controller).

The MIPI Alliance also have defined Camera Serial Interfaces, denoted CSI-1, CSI-2, or CSI-3. The I²C portion remains. The parallel portion is replaced differential clock and data signals. CSI-1 has a single data pair and a single clock pair. CSI-2 can provide multiple data pairs. CSI-3 is an extension of CSI-2 and accounts for additional protocol specifications and EMI concerns.
3 Typical Applications

There are many applications for embedded cameras and image sensors. The CPI and CSI interfaces provide a well-defined interface for connection of these image devices to a MCU. Some examples of where camera data is useful include:

- Security systems and surveillance
- Child monitors
- Production inspection systems
- Image recognition
- Mobile phones
- Internet connected camera
- Manned or unmanned aircraft
- Police & fire (vehicle dash-cam or on-person video recording)
4 What FTDI Offer

FTDI now offers the FT900 series microcontrollers that provide a connection for image sensors over the industry standard MIPI Camera Parallel Interface (CPI). Full VGA (640x480) at up to 15fps can be achieved with the FT900 series camera interface. Higher rates are possible with smaller images.
5 Contact Information

Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758
E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA
Future Technology Devices International Limited (USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987
E-mail (Sales) us.sales@ftdichip.com
E-mail (Support) us.support@ftdichip.com
E-mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan
Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576
E-mail (Sales) tw.sales@ftdichip.com
E-mail (Support) tw.support@ftdichip.com
E-mail (General Enquiries) tw.admin@ftdichip.com

Branch Office – Shanghai, China
Future Technology Devices International Limited (China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595
E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A – References

Document References
FT900 Datasheet
I²C bus
MIPI Alliance
MIPI Camera Interfaces
OmniVision sensor with parallel interface (OV7675)
OmniVision CameraCubeChip camera module with parallel interface (OVM7962)

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>Camera Parallel Interface</td>
</tr>
<tr>
<td>CSI</td>
<td>Camera Serial Interface</td>
</tr>
<tr>
<td>HREF</td>
<td>Horizontal Reference</td>
</tr>
<tr>
<td>MIPI</td>
<td>MIPI Alliance (MIPI itself is not an acronym)</td>
</tr>
<tr>
<td>PCLK</td>
<td>Pixel Clock</td>
</tr>
<tr>
<td>VSYNC</td>
<td>Vertical Sync</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables & Figures

List of Tables
Table 2.1 - Color Encoding on Pixel Data ... 6

List of Figures
Figure 2.1 - Typical Image Sensor .. 3
Figure 2.2 - Typical Camera Module .. 3
Figure 2.3 - Typical I²C connection ... 4
Figure 2.4 - I²C signaling ... 4
Figure 2.5 - Typical Image Sensor Block Diagram .. 6
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>2015-03-23</td>
</tr>
</tbody>
</table>