FTDI
Chip

Future Technology Devices International Ltd.

Software Application Development

D2XX Programmer's Guide

Document Reference No.: FT_000071
Version 1.03
Issue Date: 2010-09-08

FTDI provides DLL and virtual COM port (VCP) application interfaces to its drivers. This document
provides the application programming interface (API) for the FTD2XX DLL function library.

Future Technology Devices International Limited (FTDI)

Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758
E-Mail (Support): supporti@ftdichip.com Web: http://www.ftdichip.com

Copyright © 2010 Future Technology Devices International Limited

- —

-
r
y

FTDI
& Chip

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Table of Contents

L PIEIACE e 4
1.1 Acronyms and AbDBreviationS ... 4
P22 | 01 4 o Yo LU Lo f [] o PN 5
3 D2XX ClasSIiC FUNCLIONS ...t eeees 6
3.1 e IS Y= AV 1 1 N 6
3.2 FT_GELVIDPID ...ttt ettt e e e e ettt e e e e e e e e e s b e e eeeaaeeeenanns 6
3.3 FT_CreateDeViCelNfOLISt ... e 7
3.4 FT _GetDeViCelNTOLIST ... e e e 8
3.5 FT_GetDevicelnfoODetailccoviiiiiiiiiiieee e 9
B T e B N 13 1 1=V T o = 11
A el B ©] 01T o PP RRRPP 13
G TN R el B O o 1=] PP 14
G L T e O Lo 1= = 16
0 1O e B = LT To U PPRRRPR 17
B FT MW oottt ettt et e e, 19
3.12 FT _SetBaUARALE.......coviiiiii e e e e 20
00 G T e BT DY 1 o 21
3.14 FT_SetDataCharacteriStiCSoouuuiiiiiiiiii e 22
0 T e BT I 0 =T 01U 23
3.16 FT_SetFIOWCONIIOl..ccceuiiiii e e e 23
BuAT BT _SEUDIT oo ettt e, 24
S T e O { SRRSO PPPPPRRRPR 26
G TN R el B ST = o £ TP 27
K O B e B O £ PSS PPPPPRRRPR 28
3.21 FT_GetMOUEMSTATUS .. .uuuiieieeeeeeeeiiiee ee e 29
3.22 FT_GetQUEUEBSTALUS .. ccvuiiieiieii ettt et e e e e e e e e e e e e e a e e enas 30
3.23 FT _GetDEVICEINTO cooeeeiiiiiiie ettt e e e e e e e e e 31
3.24 FT _GetDrIVEIVEISIONouii ettt e e e e e e e e eaaans 33
3.25 FT_GetLibraryVerSiOn ittt 34
3.26 FT_GetComPOITNUMDET ..o e 34
T A o B =T 0 = U = PR 35
3.28 FT_SetEventNOtIfICAtiONc..uuiiiiii e e e 36
A T el B = O o - 39
3.30 FT _SetBreakON e 39

Copyright © 2010 Future Technology Devices International Limited 1

— FTDI Document Reference No.: FT_000071

y

\ Ch D2XX Programmer's Guide Version 1.03
LY
= I Clearance No.: FTDI#170

R R o B 1= 4 = == 1 1 40
R e B = U1 o U 41
3.33 FT _RESEIDEVICE ... cciieeiiiiie it e e e e e e e e e e e e e aees 42
.34 FT _RESEIPOIT .. et 43
R T e B OV o] = =] 43
.30 FT _RESCAN .ottt e e e e e e e e 44
3.37 FT_REI0AAttt e e e e e e e e e e e e e 45
3.38 FT_SetResetPipeRetryCOUNT........uuuiiii e 46
3.39 FT _StOPINTASK ..o e 47
340 FT_ReSTAIINTASK ..ooveeiiiiiiiiei et e e e e e e e e e e e e e e e e e 49
3.41 FT_SetDeadmanTiMEOUL.......ccooviiiiiiiiiiie e e e e e e e e e e e e e 50
BuA2 FT_IOCH oottt 51
3.43 FT_SetWaITMASKcoeeiiiiiiiii it e e e e 51
¥ e BV = 11 @ 1Y = T 51
4 EEPROM Programming Interface FUNCLiONSccccoeviiiiiiiiiineeen, 52
4.1 FT_REAUEE........ci ittt e e e e e e s eeeeeeas 52
4.2 FT WIIEEE ... e e e e e 52
4.3 FT _EFASEEE.....co 53
A4 FT_EE_REA ...ttt e, 53
45 FT_EE_REAUEX ..iiiiiiiiiiiiii ettt e e e e e e et eeaaeeas 55
I e B = o o T | = o o PR 56
A7 FT _EE _ProgramEX ...t e et e e e et e e e eaes 58
A8 FT_EE_UASIZE ..ottt e, 59
4.9 FT_EE_UAREAUovviiiiiiiii ettt e e e e e e eeaeeeas 60
A4.20 FT_EE_UAWIILE ..ot e, 61
5 Extended API FUNCHIONS ...oiiiiiiiiiiiic et e e 63
o0 R e B 7= Y (=T o Fon A T 0 = P 63
5.2 FT _GetLat@NCY TIMEI ..ttt 64
5.3 FT_SEetBItMOOE ..ouueiiiiiiiie ettt e e e e e e e e e e e e e 65
ST A e B €71 1= 7111, o o = 66
55 FT_SetUSBParameters ..ot eaas 67
6 FT-WIN32 APl FUNCLIONS ..oeeeiiiie et 69
6.1 FT_ W32 CreateFile ... e 69
6.2 FT_ W32 CloSeHANAIE c...uuiiiiiii e e e 71
R T e B VLV A o - Vo I | = 72
6.4 FT W32 WIITEFII@..cciiiii it e e 74

Copyright © 2010 Future Technology Devices International Limited 2

— FTDI Document Reference No.: FT_000071

y

\ Ch D2XX Programmer's Guide Version 1.03
LY
= I Clearance No.: FTDI#170

6.5 FT_W32_GetOverlappedReSUItcoiiiiiiiiiecc e 76
6.6 FT_W32 _EScapeCommPFUNCLIONcoiiiiiiiiiiiiii e 77
6.7 FT_W32_GetCommMOodemMStatusSccoviviiiiiiiiiee e 77
6.8 FT_W3Z2_SetUPCOMM ..ttt ettt e e et e e e e e e e eaa e e e eeenans 78
6.9 FT_W32 _SetCOMMSIALE ...couiiiiiiiiiiceee e e eaas 80
6.10 FT_W32_GetCOoOmMMSIAE .. .ccoueiieiiiii e e eeaans 80
6.11 FT_ W32 _SetCOMMTIMEOULSccoviiiiiiie e eeeeeeiiee e e e e e e e e e e e e e e e 81
6.12 FT_W32_GetCoOmMMTIMEOULS ...cceeiieiiiiiie e ettt e et e e e e e e e e 82
6.13 FT_ W32 _SetCoOmMMBIeak ..o e 83
6.14 FT_W32_ClearCommBIreak.......ccciiiiiiiiiiieieiie et 84
6.15 FT_ W32 _SetCOMMMASKcccoiiiiiiiii e 84
6.16 FT_W32_GetCOMMMASK.......cciiiiiiiiiiiie et 85
6.17 FT_W32 WaitCOMMEVENT ..o 86
6.18 FT_W32_PUIgECOMIM .ouuiiiiiiiiie ettt et e e et e e e et e e e esaans 88
6.19 FT W32 GelLasStEITOr . ettt a e eaas 89
6.20 FT_W32_ClearCOmMMEITOr ...cciiiieiiieie et e et e e 90
7 Contact INfOrmMatioN.......ccuuuiiiiiiiiie e 92
8 Appendix A -Type DefinitioNSccouiiiiiiiiiii e, 94
9 Appendix B - Revision HiStOryccoooviiiiiiiiiii e 100

Copyright © 2010 Future Technology Devices International Limited 3

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

1 Preface

The D2XX interface is a proprietary interface specifically for FTDI devices. This document provides an
explanation of the functions available to application developers via the FTD2XX library

Any software code examples given in this document are for information only. The examples are not
guaranteed and are not supported by FTDI.

1.1 Acronyms and Abbreviations

Terms Description
Combined Driver Model. Windows driver package which incorporates both D2XX
CDM -
and VCP drivers.
D2XX FTDI's proprietary “direct” driver interface via FTD2XX.DLL
VCP Virtual COM Port

Table 1.1 Acronyms and Abbreviations

Copyright © 2010 Future Technology Devices International Limited 4

Document Reference No.: FT_000071

~& FTDI

w

{. . D2XX Programmer's Guide Version 1.03
S\ Chip

- Clearance No.: FTDI#170

2 Introduction

FTDI provides two alternative software interfaces for its range of USB-UART and USB-FIFO ICs. One
interface provides a Virtual COM Port (VCP) which appears to the system as a legacy COM port. The
second interface, D2XX, is provided via a proprietary DLL (FTD2XX.DLL). The D2XX interface provides
special functions that are not available in standard operating system COM port APIs, such as setting the

device into a different mode or writing data into the device EEPROM.

In the case of the FTDI drivers for Windows, the D2XX driver and VCP driver are distributed in the same
driver package, called the Combined Driver Model (CDM) package. Figure 2.1 Windows CDM Driver
Architecture illustrates the architecture of the Windows CDM driver.

D2XX Application COM Port
Application

FTD2XX.DLL FTSER2K.SYS

FTDIBUS.SYS

Figure 2.1 Windows CDM Driver Architecture

For Linux, Mac OS X (10.4 and later) and Windows CE (4.2 and later) the D2XX driver and VCP driver are
mutually exclusive options as only one driver type may be installed at a given time for a given device ID.
In the case of a Windows system running the CDM driver, applications may use either the D2XX or VCP
interface without installing a different driver but may not use both interfaces at the same time.

As the VCP driver interface is designed to emulate a legacy COM port, FTDI does not provide
documentation on how to communicate with the VCP driver from an application; the developer is referred

to the large amount of material available on the Internet regarding serial communication.

The D2XX interface is a proprietary interface specifically for FTDI devices. This document provides an
explanation of the functions available to application developers via the FTD2XX library.

Copyright © 2010 Future Technology Devices International Limited

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3 D2XX Classic Functions

The functions listed in this section are compatible with all FTDI devices.

3.1 FT_SetVIDPID

Supported Operating Systems
Linux
Mac OS X (10.4 and later)

Summary

A command to include a custom VID and PID combination within the internal device list table. This will
allow the driver to load for the specified VID and PID combination.

Definition
FT_STATUS FT_SetVIDPID (DWORD dwVID, DWORD dwPID)

Parameters
dwVID Device Vendor ID (VID)
dwPID Device Product ID (PID)

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

By default, the driver will support a limited set of VID and PID matched devices (VID 0x0403 with PIDs
0x6001, 0x6010, 0x6006 only).

In order to use the driver with other VID and PID combinations the FT_SetVIDPID function must be used
prior to calling FT_ListDevices , FT_Open ,FT_OpenEx or FT_CreateDevicelnfolist.

3.2 FT_GetVIDPID

Supported Operating Systems
Linux
Mac OS X (10.4 and later)

Summary

A command to retrieve the current VID and PID combination from within the internal device list table.

Definition
FT_STATUS FT_GetVIDPID (DWORD * pdwVID, DWORD * pdwPID)

Copyright © 2010 Future Technology Devices International Limited 6

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters
pdwVID Pointer to DWORD that will contain the internal VID
pdwPID Pointer to DWORD that will contain the internal PID

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks
See FT_SetVIDPID

3.3 FT_CreateDevicelnfolist

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function builds a device information list and returns the number of D2XX devices connected to the
system. The list contains information about both unopen and open devices.

Definition
FT_STATUS FT_CreateDeviceInfoList (LPDWORD /pdwNumDevs)

Parameters

IpdwNumDevs Pointer to unsigned long to store the number of devices
connected.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

An application can use this function to get the number of devices attached to the system. It can then
allocate space for the device information list and retrieve the list using FT_GetDevicelnfolist or
FT_GetDevicelnfoDetail.

If the devices connected to the system change, the device info list will not be updated until
FT_CreateDevicelnfolList is called again.

Copyright © 2010 Future Technology Devices International Limited 7

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT STATUS ftStatus;
DWORD numDevs;

// create the device information list
ftStatus = FT CreateDevicelInfolist (&numDevs) ;
if (ftStatus == FT OK) {
printf ("Number of devices is %d\n",numDevs) ;

}
else {
// FT CreateDeviceInfoList failed

}

3.4 FT_GetDevicelnfolList

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function returns a device information list and the number of D2XX devices in the list.

Definition

FT_STATUS FT_GetDevicelInfolList (FT_DEVICE_LIST_INFO_NODE *pDest,
LPDWORD /pdwNumDevs)

Parameters
*pDest Pointer to an array of FT DEVICE LIST INFO NODE structures.
IpdwNumDevs Pointer to the number of elements in the array.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function should only be called after calling FT_CreateDevicelnfoList. If the devices connected to the
system change, the device info list will not be updated until FT_CreateDevicelnfolist is called again.

Location ID information is not returned for devices that are open when FT_CreateDevicelnfolList is called.

Information is not available for devices which are open in other processes. In this case, the Flags
parameter of the FT_DEVICE LIST INFO NODE will indicate that the device is open, but other fields will
be unpopulated.

The array of FT_DEVICE LIST INFO NODES contains all available data on each device. The structure of
FT _DEVICE LIST INFO NODES is given in the Appendix. The storage for the list must be allocated by
the application. The number of devices returned by FT_CreateDevicelnfoList can be used to do this.

When programming in Visual Basic, LabVIEW or similar languages, FT_GetDevicelnfoDetail may be
required instead of this function.

Copyright © 2010 Future Technology Devices International Limited 8

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Please note that Linux, Mac OS X and Windows CE do not support location IDs. As such, the Location ID
parameter in the structure will be empty under these operating systems.

Example

FT STATUS ftStatus;
FT DEVICE LIST INFO NODE *devInfo;
DWORD numDevs;

// create the device information list
ftStatus = FT CreateDevicelInfolist (&numbDevs) ;

if (ftStatus == FT OK) {
printf ("Number of devices is %d\n",numDevs) ;

}

if (numbevs > 0) {
// allocate storage for list based on numDevs
devInfo =
(FT_DEVICE LIST INFO NODE*)malloc(sizeof (FT DEVICE LIST INFO NODE) *numDevs) ;
// get the device information list
ftStatus = FT GetDeviceInfolist (devInfo, &numDevs) ;

if (ftStatus == FT OK) {
for (int 1 = 0; 1 < numDevs; 1i++) {
printf ("Dev %d:\n",1i);
printf (" Flags=0x%x\n",devInfo[i].Flags);
printf (" Type=0x%x\n",devInfo[i].Type);
printf (" ID=0x%x\n",devInfo[i].ID);
printf (" LocId=0x%$x\n",devInfo[i].LocId);
printf (" SerialNumber=%s\n",devInfo[i].SerialNumber) ;
printf (" Description=%s\n",devInfo[i].Description);
printf (" ftHandle=0x%x\n",devInfo[i].ftHandle);

3.5 FT_GetDeviceInfoDetail

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function returns an entry from the device information list.

Definition

FT_STATUS FT_GetDeviceInfoDetail (DWORD dwiIndex, LPDWORD /pdwFlags,
LPDWORD IpdwType,
LPDWORD /pdwID, LPDWORD /pdwLocld,
PCHAR pcSerialNumber, PCHAR pcDescription,
FT_HANDLE *ftHandle)

Parameters
dwlndex Index of the entry in the device info list.
IpdwFlags Pointer to unsigned long to store the flag value.

Copyright © 2010 Future Technology Devices International Limited 9

FTDI Document Reference No.: FT_000071
Ch D2XX Programmer's Guide Version 1.03
lp Clearance No.: FTDI#170

IpdwType Pointer to unsigned long to store device type.

IpdwlID Pointer to unsigned long to store device ID.

IpdwLocld Pointer to unsigned long to store the device location ID.

pcSerialNumber Pointer to buffer to store device serial number as a null-

terminated string.

pcDescription Pointer to buffer to store device description as a null-terminated
string.

*ftHandle Pointer to a variable of type FT_HANDLE where the handle will be
stored.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function should only be called after calling FT_CreateDevicelnfolList. If the devices connected to the
system change, the device info list will not be updated until FT_CreateDevicelnfolist is called again.

The index value is zero-based.

The flag value is a 4-byte bit map containing miscellaneous data as defined in the - Type Definitions. Bit
0 (least significant bit) of this number indicates if the port is open (1) or closed (0). Bit 1 indicates if the
device is enumerated as a high-speed USB device (2) or a full-speed USB device (0). The remaining bits
(2 - 31) are reserved.

Location ID information is not returned for devices that are open when FT_CreateDevicelnfolList is called.

Information is not available for devices which are open in other processes. In this case, the IpdwFlags
parameter will indicate that the device is open, but other fields will be unpopulated.

To return the whole device info list as an array of FT_DEVICE LIST INFO NODE structures, use
FT_CreateDevicelnfoList.

Please note that Linux, Mac OS X and Windows CE do not support location IDs. As such, the Location ID
parameter in the structure will be empty under these operating systems.

Example

FT STATUS ftStatus;

FT HANDLE ftHandleTemp;
DWORD numDevs;

DWORD Flags;

DWORD ID;

DWORD Type;

DWORD LocId;

char SerialNumber[16];
char Description[64];

// create the device information list
ftStatus = FT CreateDevicelInfolist (&numbDevs) ;
if (ftStatus == FT_OK) {
printf ("Number of devices is %d\n",numDevs) ;

}

if (numDevs > 0) {
// get information for device 0
ftStatus = FT GetDeviceInfoDetail (0, &Flags, &Type, &ID, &LocId, SerialNumber,

Description, &ftHandleTemp) ;
if (ftsStatus == FT OK) {
printf ("Dev 0:\n");
printf (" Flags=0x%$x\n",Flags);
printf (" Type=0x%x\n", Type) ;
printf (" ID=0x%x\n",ID);

Copyright © 2010 Future Technology Devices International Limited 10

FTDI Document Reference No.: FT_000071
Ch D2XX Programmer's Guide Version 1.03
lp Clearance No.: FTDI#170

printf (" LocId=0x%x\n",LocId);

printf (" SerialNumber=%s\n",SerialNumber) ;
printf (" Description=%s\n",Description);
printf (" ftHandle=0x%x\n", ftHandleTemp) ;

3.6 FT_ListDevices

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets information concerning the devices currently connected. This function can return information such
as the number of devices connected, the device serial number and device description strings, and the
location IDs of connected devices.

Definition
FT_STATUS FT_ListDevices (PVOID pvArg1, PVOID pvArg2, DWORD dwFlags)

Parameters

pVArg1 Meaning depends on dwFlags.

pVvArg2 Meaning depends on dwFlags.

dwfFlags Determines format of returned information.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function can be used in a number of ways to return different types of information. A more powerful
way to get device information is to use the FT_CreateDevicelnfolList, FT_GetDevicelnfoList and
FT_GetDevicelnfoDetail functions as they return all the available information on devices.

In its simplest form, it can be used to return the number of devices currently connected. If
FT LIST NUMBER ONLY bit is set in dwFlags, the parameter pvArgl is interpreted as a pointer to a
DWORD location to store the number of devices currently connected.

It can be used to return device information: if FT_OPEN BY SERIAL NUMBER bit is set in dwFlags, the
serial number string will be returned; if FT_OPEN BY DESCRIPTION bit is set in dwFlags, the product
description string will be returned; if FT_OPEN BY LOCATION bit is set in dwFlags, the Location ID will be
returned; if none of these bits is set, the serial number string will be returned by default.

It can be used to return device string information for a single device. If FT LIST BY INDEX and

FT _OPEN BY SERIAL NUMBER or FT_OPEN BY DESCRIPTION bits are set in dwFlags, the parameter
pvArgl is interpreted as the index of the device, and the parameter pvArg2 is interpreted as a pointer to
a buffer to contain the appropriate string. Indexes are zero-based, and the error code

FT_DEVICE NOT FOUND is returned for an invalid index.

It can be used to return device string information for all connected devices. If FT LIST ALL and
FT_OPEN BY SERIAL NUMBER or FT_OPEN BY DESCRIPTION bits are set in dwFlags, the parameter

Copyright © 2010 Future Technology Devices International Limited 11

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

pvArgl is interpreted as a pointer to an array of pointers to buffers to contain the appropriate strings and
the parameter pvArg2 is interpreted as a pointer to a DWORD location to store the number of devices
currently connected. Note that, for pvArgl, the last entry in the array of pointers to buffers should be a
NULL pointer so the array will contain one more location than the number of devices connected.

The location ID of a device is returned if FT_LIST BY INDEX and FT _OPEN BY LOCATION bits are set in
dwFlags. In this case the parameter pvArg1 is interpreted as the index of the device, and the parameter
PVArg2 is interpreted as a pointer to a variable of type long to contain the location ID. Indexes are zero-
based, and the error code FT_DEVICE NOT FOUND is returned for an invalid index. Please note that
Windows CE and Linux do not support location IDs.

The location IDs of all connected devices are returned if FT_LIST ALL and FT _OPEN BY LOCATION bits
are set in dwFlags. In this case, the parameter pvArgl is interpreted as a pointer to an array of variables
of type long to contain the location IDs, and the parameter pvArg2 is interpreted as a pointer to a
DWORD location to store the number of devices currently connected.

Examples

The examples that follow use these variables.

FT STATUS ftStatus;
DWORD numDevs;

1. Get the number of devices currently connected

ftStatus = FT ListDevices (&numDevs,NULL,FT LIST NUMBER ONLY) ;
if (ftstatus == FT OK) {
// FT ListDevices OK, number of devices connected is in numDevs
}
else {
// FT ListDevices failed
t

2. Get serial number of first device

DWORD devIndex = 0; // first device

char Buffer[64]; // more than enough room!

ftStatus =

FT ListDevices ((PVOID)devIndex,Buffer, FT LIST BY INDEX|FT OPEN BY SERIAL NUMBER);
if (ftStatus == FT OK) {

// FT ListDevices OK, serial number is in Buffer
}
else {

// FT ListDevices failed
}

Note that indexes are zero-based. If more than one device is connected, incrementing devindex will get
the serial number of each connected device in turn.

3. Get device descriptions of all devices currently connected

char *BufPtrs([3]; // pointer to array of 3 pointers
char Bufferl[64]; // buffer for description of first device
char Buffer2[64]; // buffer for description of second device

// initialize the array of pointers

BufPtrs[0] = Bufferl;
BufPtrs([1l] = Buffer2;
BufPtrs([2] = NULL; // last entry should be NULL

ftStatus = FTiLiStDeviceS(BufPtrs,&numDevs,FTiLISTiALLlFTioPENiBYiDESCRIPTION);
if (ftStatus == FT_OK) {
// FT _ListDevices OK, product descriptions are in Bufferl and Buffer2, and
// numDevs contains the number of devices connected
}
else {
// FT ListDevices failed
}

Copyright © 2010 Future Technology Devices International Limited 12

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Note that this example assumes that two devices are connected. If more devices are connected, then the
size of the array of pointers must be increased and more description buffers allocated.

4. Get locations of all devices currently connected
long locIdBuf([l6];

ftStatus = FT ListDevices(locIdBuf, &numDevs,FT LIST ALL|FT OPEN BY LOCATION) ;
if (ftStatus == FT OK) {
// FT_ListDevices OK, location IDs are in locIdBuf, and
// numDevs contains the number of devices connected

}

else {
// FT ListDevices failed
}

Note that this example assumes that no more than 16 devices are connected. If more devices are
connected, then the size of the array of pointers must be increased.

3.7 FT_Open

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Open the device and return a handle which will be used for subsequent accesses.

Definition
FT_STATUS FT_Open (int iDevice, FT_HANDLE *ftHandle)

Parameters
iDevice Index of the device to open. Indices are 0 based.
ftHandle Pointer to a variable of type FT_HANDLE where the handle will be

stored. This handle must be used to access the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

Although this function can be used to open multiple devices by setting iDevice to 0, 1, 2 etc. there is no
ability to open a specific device. To open named devices, use the function FT_OpenEx.

Copyright © 2010 Future Technology Devices International Limited 13

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example
FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open (0, &ftHandle) ;
if (ftstatus == FT OK) {

// FT Open OK, use ftHandle to access device
}

else {
// FT Open failed
}

3.8 FT_OpenEx

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Open the specified device and return a handle that will be used for subsequent accesses. The device can
be specified by its serial number, device description or location.

This function can also be used to open multiple devices simultaneously. Multiple devices can be specified
by serial number, device description or location ID (location information derived from the physical
location of a device on USB). Location IDs for specific USB ports can be obtained using the utility
USBView and are given in hexadecimal format. Location IDs for devices connected to a system can be
obtained by calling FT_GetDevicelnfoList or FT_ListDevices with the appropriate flags.

Definition
FT_STATUS FT_OpenEx (PVOID pvArgl, DWORD dwFlags, FT_HANDLE *ftHandle)

Parameters

pVArgl Pointer to an argument whose type depends on the value of
dwFlags. It is normally be interpreted as a pointer to a null
terminated string.

dwFlags FT_OPEN BY SERIAL NUMBER, FT _OPEN BY DESCRIPTION or
FT_OPEN BY LOCATION.
ftHandle Pointer to a variable of type FT_HANDLE where the handle will be

stored. This handle must be used to access the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 14

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Remarks

The parameter specified in pvArgl depends on dwFlags: if dwFlags is FT_OPEN BY SERIAL NUMBER,
pVArgl is interpreted as a pointer to a null-terminated string that represents the serial number of the
device; if dwFlags is FT_OPEN BY DESCRIPTION, pvArgl is interpreted as a pointer to a null-
terminated string that represents the device description; if dwFlags is FT OPEN BY LOCATION, pvArgl
is interpreted as a long value that contains the location ID of the device. Please note that Windows CE
and Linux do not support location IDs.

ftHandle is a pointer to a variable of type FT_HANDLE where the handle is to be stored. This handle must
be used to access the device.

Examples

The examples that follow use these variables.

FT STATUS ftStatus;
FT STATUS ftStatus2;
FT HANDLE ftHandlel;
FT HANDLE ftHandle2;
long dwlLoc;

1. Open a device with serial number "FTO00001"
ftStatus = FT_OpenEx ("FT000001",FT OPEN BY SERIAL NUMBER, &ftHandlel);

if (ftStatus == FT OK) {

// success - device with serial number "FT000001" is open
}
else {

// failure

}

2. Open a device with device description "USB Serial Converter"

ftStatus = FT OpenEx ("USB Serial Converter",FT OPEN BY DESCRIPTION, &ftHandlel);
if (ftstatus == FT OK) {

// success - device with device description "USB Serial Converter" is open
}
else {

// failure
}

3. Open 2 devices with serial numbers "FT000001" and "FT999999"

ftStatus = FT_OpenEx ("FT000001",FT OPEN BY SERIAL NUMBER, &ftHandlel);
ftStatus2 = FT OpenEx ("FT999999",FT OPEN BY SERIAL NUMBER, &ftHandle2);
if (ftStatus == FT OK && ftStatus2 == FT OK) {

// success - both devices are open
}
else {

// failure - one or both of the devices has not been opened

}

4. Open 2 devices with descriptions "USB Serial Converter" and "USB Pump Controller"

ftStatus = FT OpenEx ("USB Serial Converter",FT OPEN BY DESCRIPTION, &ftHandlel);
ftStatus2 = FT OpenEx ("USB Pump Controller",FT OPEN BY DESCRIPTION, &ftHandle2);
if (ftsStatus == FT OK && ftStatus2 == FT OK) {

// success - both devices are open
}
else {

// failure - one or both of the devices has not been opened

}

5. Open a device at location 23

dwLoc = 0x23;
ftStatus = FT OpenEx (dwLoc,FT OPEN BY LOCATION, &ftHandlel);
if (ftStatus == FT _OK) {

// success - device at location 23 is open

Copyright © 2010 Future Technology Devices International Limited 15

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

else {
// failure
}

6. Open 2 devices at locations 23 and 31

dwLoc = 0x23;
ftStatus = FT OpenEx (dwLoc, FT OPEN BY LOCATION, &ftHandlel);
dwLoc = 0x31;
ftStatus2 = FT OpenEx (dwLoc,FT OPEN BY LOCATION, &ftHandle2);
if (ftStatus == FT OK && ftStatus2 == FT OK) {

// success - both devices are open

}
else {
// failure - one or both of the devices has not been opened

}

3.9 FT_Close

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Close an open device.

Definition
FT_STATUS FT_Close (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 16

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open (0, &ftHandle) ;

if (ftstatus == FT OK) {
// FT Open OK, use ftHandle to access device
// when finished, call FT Close
FT Close (ftHandle);

}

else {
// FT Open failed
}

3.10 FT_Read

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Read data from the device.

Definition
FT_STATUS FT_Read (FT_HANDLE ftHandle, LPVOID IpBuffer, DWORD dwBytesToRead,
LPDWORD IpdwBytesReturned)

Parameters

ftHandle Handle of the device.

IpBuffer Pointer to the buffer that receives the data from the device.

dwBytesToRead Number of bytes to be read from the device.

IpdwBytesReturned Pointer to a variable of type DWORD which receives the nhumber
of bytes read from the device.

Return Value
FT_OK if successful, FT_IO_ERROR otherwise.

Remarks
FT_Read always returns the number of bytes read in IpdwBytesReturned.

This function does not return until dwBytesToRead bytes have been read into the buffer. The number of
bytes in the receive queue can be determined by calling FT_GetStatus or FT_GetQueueStatus, and
passed to FT_Read as dwBytesToRead so that the function reads the device and returns immediately.

When a read timeout value has been specified in a previous call to FT_SetTimeouts, FT_Read returns
when the timer expires or dwBytesToRead have been read, whichever occurs first. If the timeout
occurred, FT_Read reads available data into the buffer and returns FT_OK.

Copyright © 2010 Future Technology Devices International Limited 17

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

An application should use the function return value and IpdwBytesReturned when processing the buffer.
If the return value is FT_OK, and IpdwBytesReturned is equal to dwBytesToRead then FT_Read has
completed normally. If the return value is FT_OK, and IpdwBytesReturned is less then dwBytesToRead
then a timeout has occurred and the read has been partially completed. Note that if a timeout occurred
and no data was read, the return value is still FT_OK.

A return value of FT_IO_ERROR suggests an error in the parameters of the function, or a fatal error like a
USB disconnect has occurred.

Examples

1. This sample shows how to read all the data currently available.

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD EventDWord;
DWORD TxBytes;

DWORD RxBytes;

DWORD BytesReceived;
char RxBuffer[256];

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

FT GetStatus (ftHandle, &RxBytes, &TxBytes, &EventDWord) ;
if (RxBytes > 0) {
ftStatus = FT Read(ftHandle,RxBuffer,RxBytes, &BytesReceived);
if (ftStatus == FT OK) {
// FT _Read OK
}
else {
// FT_Read Failed
}
t

FT Close(ftHandle);

2. This sample shows how to read with a timeout of 5 seconds.

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD RxBytes = 10;
DWORD BytesReceived;
char RxBuffer[256];

ftStatus = FT Open (0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

FT SetTimeouts (ftHandle,5000,0);
ftStatus = FT Read(ftHandle,RxBuffer,RxBytes, &BytesReceived);
if (ftStatus == FT_OK) {
if (BytesReceived == RxBytes) ({
// FT_Read OK
}
else {
// FT_Read Timeout
}

else {
// FT_Read Failed
}

FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 18

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.11 FT_Write

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)
Summary

Write data to the device.

Definition
FT_STATUS FT_Write (FT_HANDLE ftHandle, LPVOID IpBuffer, DWORD dwBytesToWrite,
LPDWORD IpdwBytesWritten)

Parameters
ftHandle Handle of the device.
IpBuffer Pointer to the buffer that contains the data to be written to the
device.
dwBytesToWrite Number of bytes to write to the device.
IpdwBytesWritten Pointer to a variable of type DWORD which receives the number
of bytes written to the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD BytesWritten;
char TxBuffer[256]; // Contains data to write to device

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT Write(ftHandle, TxBuffer, sizeof (TxBuffer), &BytesWritten);
if (ftsStatus == FT OK) {
// FT Write OK
}
else {
// FT_Write Failed
}

FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 19

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.12 FT_SetBaudRate

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the baud rate for the device.

Definition
FT_STATUS FT_SetBaudRate (FT_HANDLE ftHandle, DWORD dwBaudRate)

Parameters
ftHandle Handle of the device.
dwBaudRate Baud rate.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT _OK) {
// FT Open failed
return;

}

ftStatus = FT_SetBaudRate (ftHandle, 115200); // Set baud rate to 115200
if (ftStatus == FT OK) {
// FT_SetBaudRate OK
}
else {
// FT_SetBaudRate Failed
}
}

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 20

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.13 FT_SetDivisor

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the baud rate for the device. It is used to set non-standard baud rates.

Definition
FT_STATUS FT_SetDivisor (FT_HANDLE ftHandle, USHORT usDivisor)

Parameters
ftHandle Handle of the device.
usDivisor Divisor.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is no longer required as

Copyright © 2010 Future Technology Devices International Limited 21

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

FT_SetBaudRate will now automatically calculate the required divisor for a requested baud rate. The
application note "Setting baud rates for the FT8U232AM" is available from the Application Notes section
of the FTDI website describes how to calculate the divisor for a non-standard baud rate.

3.14 FT_SetDataCharacteristics

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the data characteristics for the device.

Definition
FT_STATUS FT_SetDataCharacteristics (FT_HANDLE ftHandle, UCHAR uWordLength,
UCHAR uStopBits, UCHAR uParity)

Parameters
ftHandle Handle of the device.
uWordLength Number of bits per word - must be FT_BITS 8 or FT _BITS 7.
uStopBits Number of stop bits - must be FT_STOP BITS 1 or
FT STOP BITS 2.
uParity Parity - must be FT PARITY NONE, FT PARITY ODD,

FT_PARITY EVEN, FT PARITY MARK or FT_PARITY SPACE.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

// Set 8 data bits, 1 stop bit and no parity
ftstatus = FT SetDataCharacteristics (ftHandle, FT BITS 8, FT STOP BITS 1,
FT PARITY NONE);
if (ftStatus == FT OK) {
// FT_SetDataCharacteristics OK
}
else {
// FT_SetDataCharacteristics Failed
}
}

FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 22

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.15 FT_SetTimeouts

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the read and write timeouts for the device.

Definition

FT_STATUS FT_SetTimeouts (FT_HANDLE ftHandle, DWORD dwReadTimeout,
DWORD dwWriteTimeout)

Parameters

ftHandle Handle of the device.
dwReadTimeout Read timeout in milliseconds.
dwWriteTimeout Write timeout in milliseconds.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open (0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}
// Set read timeout of 5sec, write timeout of lsec
ftStatus = FT SetTimeouts (ftHandle, 5000, 1000);
if (ftStatus == FT OK) {

// FT_SetTimeouts OK
}

else {
// FT_SetTimeouts failed

}

FT Close (ftHandle);

3.16 FT_SetFlowControl

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Copyright © 2010 Future Technology Devices International Limited 23

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Summary

This function sets the flow control for the device.

Definition

FT_STATUS FT_SetFlowControl (FT_HANDLE ftHandle, USHORT usFlowControl,

UCHAR uXon, UCHAR uXoff)

Parameters

ftHandle Handle of the device.

usFlowControl Must be one of FT_FLOW NONE, FT FLOW RTS CTS,
FT FLOW DTR DSR or FT FLOW XON XOFF.

uXon Character used to signal Xon. Only used if flow control is
FT FLOW XON XOFF.

uXoff Character used to signal Xoff. Only used if flow control is

FT_FLOW XON_ XOFF.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);
if (ftStatus != FT OK) {
// FT Open failed

return;

}

// Set RTS/CTS flow control

ftStatus = FT SetFlowControl (ftHandle, FT FLOW RTS CTS,
if (ftstatus == FT OK) {
// FT_SetFlowControl OK
}
else {

// FT_SetFlowControl Failed
}
}

FT Close(ftHandle);

3.17 FT_SetDtr

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the Data Terminal Ready (DTR) control signal.

Copyright © 2010 Future Technology Devices International Limited

0x11,

0x13);

24

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition
FT_STATUS FT_SetDtr (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.
Remarks

This function asserts the Data Terminal Ready (DTR) line of the device.

Copyright © 2010 Future Technology Devices International Limited 25

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}
ftStatus = FT SetDtr (ftHandle);
if (ftStatus == FT OK) {
// FT_SetDtr OK
}
else {
// FT SetDtr failed
}

FT Close(ftHandle);

3.18 FT_CIrDtr

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function clears the Data Terminal Ready (DTR) control signal.

Definition
FT_STATUS FT_CIrDtr (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.
Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function de-asserts the Data Terminal Ready (DTR) line of the device.

Copyright © 2010 Future Technology Devices International Limited 26

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT ClrDtr (ftHandle);
if (ftstatus == FT OK) {

// FT _ClrDtr OK
}

else {
// FT ClrDtr failed
}

FT Close (ftHandle);

3.19 FT_SetRts

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
This function sets the Request To Send (RTS) control signal.

Definition
FT_STATUS FT_SetRts (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function asserts the Request To Send (RTS) line of the device.

Copyright © 2010 Future Technology Devices International Limited 27

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT SetRts(ftHandle);
if (ftStatus == FT OK) {

// FT_SetRts OK
}

else {
// FT _SetRts failed
}

FT Close (ftHandle);

3.20 FT_CIrRts

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function clears the Request To Send (RTS) control signal.

Definition
FT_STATUS FT_CIrRts (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function de-asserts the Request To Send (RTS) line of the device.

Copyright © 2010 Future Technology Devices International Limited 28

Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT ClrRts(ftHandle);
if (ftStatus == FT OK) {

// FT _ClrRts OK
}

else {
// FT _ClrRts failed
}

FT Close (ftHandle);

3.21 FT_GetModemStatus

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the modem status and line status from the device.

Definition
FT_STATUS FT_GetModemsStatus (FT_HANDLE ftHandle, LPDWORD IpdwModemStatus)

Parameters
ftHandle Handle of the device.
IpdwModemStatus Pointer to a variable of type DWORD which receives the modem

status and line status from the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

The least significant byte of the /IpdwModemStatus value holds the modem status. On Windows and
Windows CE, the line status is held in the second least significant byte of the IpdwModemStatus value.

The modem status is bit-mapped as follows: Clear To Send (CTS) = 0x10, Data Set Ready (DSR) = 0x20,
Ring Indicator (RI) = 0x40, Data Carrier Detect (DCD) = 0x80.

The line status is bit-mapped as follows: Overrun Error (OE) = 0x02, Parity Error (PE) = 0x04, Framing
Error (FE) = 0x08, Break Interrupt (BI) = 0x10.

Copyright © 2010 Future Technology Devices International Limited 29

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;

FT STATUS ftStatus;
DWORD dwModemStatus = 0;
DWORD dwLineStatus = 0;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT GetModemStatus (ftHandle, &dwModemStatus);
if (ftstatus == FT OK) {
// FT GetModemStatus OK
// Line status is the second byte of the dwModemStatus value

dwLineStatus = ((dwModemStatus >> 8) & 0xO000000FF) ;
// Now mask off the modem status byte
dwModemStatus = (dwModemStatus & O0xO00000O0FF) ;

t

else {

// FT_GetModemStatus failed
}

FT Close (ftHandle);

3.22 FT_GetQueueStatus

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the number of characters in the receive queue.

Definition
FT_STATUS FT_GetQueueStatus (FT_HANDLE ftHandle, LPDWORD /pdwAmountIinRxQueue)

Parameters
ftHandle Handle of the device.
IpdwAmountInRxQueue Pointer to a variable of type DWORD which receives the number of

characters in the receive queue.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 30

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD RxBytes;

DWORD BytesReceived;
char RxBuffer[256];

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

FT GetQueueStatus (ftHandle, &RxBytes) ;
if (RxBytes > 0) {
ftStatus = FT Read(ftHandle,RxBuffer,RxBytes, &BytesReceived);
if (ftStatus == FT OK) {
// FT _Read OK
}

else {
// FT_Read Failed
}
}

FT Close (ftHandle);

3.23 FT_GetDevicelnfo

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Get device information for an open device.

Definition

FT_STATUS FT_GetDeviceInfo (FT_HANDLE ftHandle, FT_DEVICE *pftType,
LPDWORD /pdwID, PCHAR pcSerialNumber,
PCHAR pcDescription, PVOID pvDummy)

Parameters

ftHandle Handle of the device.

pftType Pointer to unsigned long to store device type.

IpdwiID Pointer to unsigned long to store device ID.

pcSerialNumber Pointer to buffer to store device serial number as a null-

terminated string.

pcDescription Pointer to buffer to store device description as a null-terminated
string.

pvDummy Reserved for future use - should be set to NULL.

Copyright © 2010 Future Technology Devices International Limited 31

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks
This function is used to return the device type, device ID, device description and serial number.

The device ID is encoded in a DWORD - the most significant word contains the vendor ID, and the least
significant word contains the product ID. So the returned ID 0x04036001 corresponds to the device ID
VID_0403&PID_6001.

Example

FT HANDLE ftHandle;

FT DEVICE ftDevice;

FT STATUS ftStatus;
DWORD devicelID;

char SerialNumber[16];
char Description[64];

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftstatus = FT GetDevicelInfo(

ftHandle,
&ftDevice,
&devicelD,
SerialNumber,
Description,
NULL
)
if (ftStatus == FT OK) {
if (ftDevice == FT DEVICE 232R)
; // device is FT232R
else if (ftDevice == FT DEVICE 2232C)
; // device is FT2232C/L/D
else if (ftDevice == FT DEVICE BM)
; // device is FTU232BM
else if (ftDevice == FT DEVICE AM)

; // device is FT8U232AM
else
; // unknown device (this should not happen!)
// devicelID contains encoded device ID
// SerialNumber, Description contain O-terminated strings
}
else {
// FT _GetDeviceType FAILED!
}

FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 32

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.24 FT_GetDriverVersion

Supported Operating Systems
Windows (2000 and later)
Windows CE (4.2 and later)

Summary

This function returns the D2XX driver version number.

Definition
FT_STATUS FT_GetDriverVersion (FT_HANDLE ftHandle, LPDWORD IpdwDriverVersion)

Parameters
ftHandle Handle of the device.
IpdwDriverVersion Pointer to the driver version number.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

A version number consists of major, minor and build version numbers contained in a 4-byte field
(unsigned long). ByteO (least significant) holds the build version, Bytel holds the minor version, and
Byte2 holds the major version. Byte3 is currently set to zero.

For example, driver version "2.04.06" is represented as 0x00020406. Note that a device has to be
opened before this function can be called.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD dwDriverVer;

// Get driver version
ftStatus = FT Open (0, &ftHandle) ;

if (ftStatus == FT OK) {
ftStatus = FT GetDriverVersion (ftHandle, &dwDriverVer) ;
if (ftStatus == FT_OK)
printf ("Driver version = 0x%x\n",dwDriverVer) ;
else

printf ("error reading driver version\n");
FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 33

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.25 FT_GetLibraryVersion

Supported Operating Systems
Windows (2000 and later)

Windows CE (4.2 and later)
Summary

This function returns D2XX DLL version number.

Definition
FT_STATUS FT_GetLibraryVersion (LPDWORD I/pdwDLLVersion)

Parameters

IpdwDLLVersion Pointer to the DLL version number.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.
Remarks

A version number consists of major, minor and build version numbers contained in a 4-byte field
(unsigned long). ByteO (least significant) holds the build version, Bytel holds the minor version, and
Byte2 holds the major version. Byte3 is currently set to zero.

For example, D2XX DLL version "3.01.15" is represented as 0x00030115. Note that this function does
not take a handle, and so it can be called without opening a device.

Example

FT STATUS ftStatus;
DWORD dwlLibraryVer;

// Get DLL version
ftStatus = FT GetLibraryVersion (&dwLibraryVer) ;
if (ftstatus == FT OK)
printf ("Library version = 0x%x\n",dwLibraryVer) ;
else
printf ("error reading library version\n");

3.26 FT_GetComPortNumber

Supported Operating Systems
Windows (2000 and later)

Summary

Retrieves the COM port associated with a device.

Definition
FT_STATUS FT_GetComPortNumber (FT_HANDLE ftHandle, LPLONG Ip/ComPortNumber)

Copyright © 2010 Future Technology Devices International Limited 34

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters
ftHandle Handle of the device.

IplIComPortNumber Pointer to a variable of type LONG which receives the COM port number
associated with the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is only available when using the Windows CDM driver as both the D2XX and VCP drivers can
be installed at the same time.

If no COM port is associated with the device, Ip/ComPortNumber will have a value of -1.

Example

FT_HANDLE ftHandle; // valid handle returned from FT OpenEx
FT_STATUS ftStatus;
LONG 1lComPortNumber;

ftStatus = FT GetComPortNumber (ftHandle, &1ComPortNumber) ;
if (status == FT OK) {
if (1lComPortNumber == -1) {
// No COM port assigned
}
else {
// COM port assigned with number held in lComPortNumber
}
}

else {
// FT_GetComPortNumber FAILED!

}
FT Close (ftHandle);

3.27 FT_GetStatus

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the device status including number of characters in the receive queue, number of characters in the
transmit queue, and the current event status.

Definition

FT_STATUS FT_GetStatus (FT_HANDLE ftHandle, LPDWORD IpdwAmountInRxQueue,
LPDWORD IpdwAmountInTxQueue, LPDWORD IpdwEventStatus)

Copyright © 2010 Future Technology Devices International Limited 35

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters
ftHandle Handle of the device.

IpdwAmountInRxQueue Pointer to a variable of type DWORD which receives the number of characters in
the receive queue.

IpdwAmountInTxQueue Pointer to a variable of type DWORD which receives the number of characters in
the transmit queue.

IpdwEventStatus Pointer to a variable of type DWORD which receives the current state of the event
status.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

For an example of how to use this function, see the sample code in FT_SetEventNotification.

3.28 FT_SetEventNotification

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Sets conditions for event notification.

Definition

FT_STATUS FT_SetEventNotification (FT_HANDLE ftHandle, DWORD dwEventMask,
PVOID pvArg)

Parameters

ftHandle Handle of the device.

dwEventMask Conditions that cause the event to be set.
pVArg Interpreted as the handle of an event.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

An application can use this function to setup conditions which allow a thread to block until one of the
conditions is met. Typically, an application will create an event, call this function, then block on the
event. When the conditions are met, the event is set, and the application thread unblocked.

dwEventMask is a bit-map that describes the events the application is interested in. pvArg is interpreted
as the handle of an event which has been created by the application. If one of the event conditions is
met, the event is set.

Copyright © 2010 Future Technology Devices International Limited 36

&7 F I DI Document Reference No.: FT_000071
vy
!‘ . D2XX Programmer's Guide Version 1.03
A

& Chip

Clearance No.: FTDI#170

If FT_ EVENT RXCHAR is set in dwEventMask, the event will be set when a character has been received

by the device.

If FT EVENT MODEM STATUS is set in dwEventMask, the event will be set when a change in the modem

signals has been detected by the device.

If FT_EVENT LINE STATUS is set in dwEventMask, the event will be set when a change in the line status

has been detected by the device.

Examples

1. This example is valid for Windows and Windows CE and shows how to wait for a character to be
received or a change in modem status.

// First, create the event and call FT_SetEventNotification.
FT_HANDLE ftHandle; // handle of an open device

FT STATUS ftStatus;

HANDLE hEvent;

DWORD EventMask;

hEvent = CreateEvent (
NULL,
false, // auto-reset event
false, // non-signalled state
)
EventMask = FT EVENT RXCHAR | FT EVENT MODEM STATUS;
ftStatus = FT SetEventNotification (ftHandle,EventMask,hEvent) ;

// Sometime later, block the application thread by waiting on the event, then when the
event has

// occurred, determine the condition that caused the event, and process it accordingly.

WaitForSingleObject (hEvent, INFINITE) ;

DWORD EventDWord;
DWORD RxBytes;
DWORD TxBytes;

FT GetStatus (ftHandle, &§RxBytes, &TxBytes, &EventDWord) ;
if (EventDWord & FT_ EVENT MODEM STATUS) {
// modem status event detected, so get current modem status
FT GetModemStatus (ftHandle, &Status);
if (Status & 0x00000010) {
// CTS is high
}
else {
// CTS is low
}
if (Status & 0x00000020) {
// DSR is high
}
else {
// DSR is low
}
}
if (RxBytes > 0) {
// call FT Read() to get received data from device

2. This example is valid for Linux and shows how to wait for a character to be received or a change in
modem status.

// First, create the event and call FT_ SetEventNotification.
FT HANDLE ftHandle;

FT STATUS ftStatus;

EVENT HANDLE eh;

DWORD EventMask;

Copyright © 2010 Future Technology Devices International Limited

37

=7 FTDI Document Reference No.: FT_000071
v
'r. . D2XX Programmer's Guide Version 1.03
A Chip

- Clearance No.: FTDI#170

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

pthread mutex init (&eh.eMutex, NULL);
pthread cond init (&eh.eCondVar, NULL);

EventMask = FT EVENT RXCHAR | FT EVENT MODEM STATUS;
ftStatus = FT SetEventNotification(ftHandle, EventMask, (PVOID)&eh);

// Sometime later, block the application thread by waiting on the event, then when the
event has
// occurred, determine the condition that caused the event, and process it accordingly.

pthread mutex lock(&eh.eMutex) ;
pthread cond wait (&eh.eCondVar, &eh.eMutex);
pthread mutex unlock(&eh.eMutex) ;

DWORD EventDWord;
DWORD RxBytes;
DWORD TxBytes;
DWORD Status;
FT GetStatus (ftHandle, &RxBytes, &TxBytes, &EventDWord) ;
if (EventDWord & FT_EVENT_MODEM_STATUS) {
// modem status event detected, so get current modem status
FT GetModemStatus (ftHandle, &Status);
if (Status & 0x00000010) {
// CTS is high
}
else {
// CTS is low
}
if (Status & 0x00000020) {
// DSR is high
}
else {
// DSR is low
}
}
if (RxBytes > 0) {
// call FT Read() to get received data from device
}

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 38

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.29 FT_SetChars

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the special characters for the device.

Definition

FT_STATUS FT_SetChars (FT_HANDLE ftHandle, UCHAR uEventCh, UCHAR uEventChEn,
UCHAR uErrorCh, UCHAR uErrorChEn)

Parameters

ftHandle Handle of the device.

uEventCh Event character.

UEventChEn 0 if event character disabled, non-zero otherwise.
uErrorCh Error character.

UErrorChEn 0 if error character disabled, non-zero otherwise.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function allows for inserting specified characters in the data stream to represent events firing or
errors occurring.

3.30 FT_SetBreakOn

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Sets the BREAK condition for the device.

Definition
FT_STATUS FT_SetBreakOn (FT_HANDLE ftHandle)

Copyright © 2010 Future Technology Devices International Limited 39

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;

ftStatus = FT SetBreakOn (ftHandle);
if (ftStatus == FT OK) {

// FT_SetBreakOn OK
}

else {
// FT_SetBreakOn failed
}

FT Close(ftHandle);

3.31 FT_SetBreakOff

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Resets the BREAK condition for the device.
Definition

FT_STATUS FT_SetBreakOff (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 40

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx

FT STATUS ftStatus;

ftStatus = FT SetBreakOff (ftHandle);

if (ftStatus == FT OK) {
// FT_ SetBreakOff OK
}

else {
// FT_SetBreakOff failed
}

FT Close (ftHandle);

3.32 FT_Purge

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function purges receive and transmit buffers in the device.

Definition

FT_STATUS FT_Purge (FT_HANDLE ftHandle, DWORD dwMask)

Parameters
ftHandle Handle of the device.
dwMask Combination of FT_PURGE RX and FT _PURGE TX.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 41

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;

ftStatus = FT Purge (ftHandle, FT PURGE RX | FT PURGE TX); // Purge both Rx and Tx buffers
if (ftstatus == FT OK) {
// FT_Purge OK
}
else {
// FT_Purge failed

t
FT Close (ftHandle);

3.33 FT_ResetDevice

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sends a reset command to the device.

Definition
FT_STATUS FT_ResetDevice (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;

ftStatus = FT ResetDevice (ftHandle);
if (ftStatus == FT_OK) {
// FT_ResetDevice OK
}
else {
// FT_ResetDevice failed
}
FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 42

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.34 FT_ResetPort

Supported Operating Systems
Windows (2000 and later)

Summary

Send a reset command to the port.

Definition
FT_STATUS FT_ResetPort (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is used to attempt to recover the port after a failure. It is not equivalent to an unplug-
replug event. For the equivalent of an unplug-replug event, use FT_CyclePort.

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;

ftStatus = FT ResetPort (ftHandle);
if (ftStatus == FT OK) {
// Port has been reset
}
else {
// FT_ResetPort FAILED!

}

3.35 FT_CyclePort

Supported Operating Systems
Windows (2000 and later)

Summary

Send a cycle command to the USB port.

Definition
FT_STATUS FT_CyclePort (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.
Copyright © 2010 Future Technology Devices International Limited 43

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

The effect of this function is the same as disconnecting then reconnecting the device from USB. Possible
use of this function is situations where a fatal error has occurred and it is difficult, or not possible, to
recover without unplugging and replugging the USB cable. This function can also be used after re-
programming the EEPROM to force the FTDI device to read the new EEPROM contents which would
otherwise require a physical disconnect-reconnect.

As the current session is not restored when the driver is reloaded, the application must be able to recover
after calling this function. It is ithe responisbility of the application to close the handle after successfully
calling FT_CyclePort.

For FT4232H, FT2232H and FT2232 devices, FT_CyclePort will only work under Windows XP and later

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;

ftStatus = FT CyclePort (ftHandle) ;
if (ftStatus == FT OK) ({

// Port has been cycled.

// Close the handle.

ftStatus = FT Close (ftHandle);
}

else {
// FT_CyclePort FAILED!

}

3.36 FT_Rescan

Supported Operating Systems
Windows (2000 and later)

Summary

This function can be of use when trying to recover devices programatically.

Definition
FT_STATUS FT_Rescan ()

Parameters

None

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

Calling FT_Rescan is equivalent to clicking the "Scan for hardware changes" button in the Device
Manager. Only USB hardware is checked for new devices. All USB devices are scanned, not just FTDI
devices.

Copyright © 2010 Future Technology Devices International Limited 44

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example
FT STATUS ftstatus;

ftStatus = FT Rescan();

if (ftStatus != FT OK) {
// FT_Rescan failed!
return;

3.37 FT_Reload

Supported Operating Systems
Windows (2000 and later)

Summary

This function forces a reload of the driver for devices with a specific VID and PID combination.

Definition
FT_STATUS FT_Reload (WORD wVID, WORD wPID)

Parameters
wVID Vendor ID of the devices to reload the driver for.
wPID Product ID of the devices to reload the driver for.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

Calling FT_Reload forces the operating system to unload and reload the driver for the specified device
IDs. If the VID and PID parameters are null, the drivers for USB root hubs will be reloaded, causing all
USB devices connected to reload their drivers. Please note that this function will not work correctly on
64-bit Windows when called from a 32-bit application.

Examples

1. This example shows how to call FT_Reload to reload the driver for a standard FT232R device (VID
0x0403, PID 0x6001).

FT STATUS ftstatus;
WORD wVID = 0x0403;
WORD wPID = 0x6001;

ftStatus = FT Reload(wVID,wPID);

if (ftstatus != FT OK) ({
// FT_Reload failed!
return;

Copyright © 2010 Future Technology Devices International Limited 45

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

2. This example shows how to call FT Reload to reload the drivers for all USB devices.

FT STATUS ftstatus;
WORD wVID = 0x0000;
WORD wPID = 0x0000;

ftStatus = FT Reload(wVID,wPID);

if (ftStatus != FT OK) {
// FT Reload failed!
return;

3.38 FT_SetResetPipeRetryCount

Supported Operating Systems
Windows (2000 and later)
Windows CE (4.2 and later)

Summary
Set the ResetPipeRetryCount value.

Definition
FT_STATUS FT_SetResetPipeRetryCount (FT_HANDLE ftHandle, DWORD dwCount)

Parameters
ftHandle Handle of the device.
dwCount Unsigned long containing required ResetPipeRetryCount.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is used to set the ResetPipeRetryCount. ResetPipeRetryCount controls the maximum
number of times that the driver tries to reset a pipe on which an error has occurred.
ResetPipeRequestRetryCount defaults to 50. It may be necessary to increase this value in noisy
environments where a lot of USB errors occur.

Example

FT HANDLE ftHandle; // valid handle returned from FT OpenEx
FT STATUS ftStatus;
DWORD dwRetryCount;

dwRetryCount = 100;
ftStatus = FT SetResetPipeRetryCount (ftHandle,dwRetryCount) ;
if (ftStatus == FT_OK) {

// ResetPipeRetryCount set to 100
}

else {
// FT_SetResetPipeRetryCount FAILED!

}

Copyright © 2010 Future Technology Devices International Limited 46

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.39 FT_StopInTask

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Stops the driver's IN task.

Definition
FT_STATUS FT_StopInTask (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is used to put the driver's IN task (read) into a wait state. It can be used in situations
where data is being received continuously, so that the device can be purged without more data being
received. It is used together with

Copyright © 2010 Future Technology Devices International Limited 47

&7 FTDI Document Reference No.: FT_000071

-
"
vy
!‘ . D2XX Programmer's Guide Version 1.03

2 Chip
e Clearance No.: FTDI#170

FT_RestartInTask which sets the IN task running again.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

t

do

{
ftStatus = FT StopInTask (ftHandle);

}

while (ftStatus != FT OK);

//

// Do something - for example purge device
//

do {

ftStatus = FT RestartInTask(ftHandle);
} while (ftStatus != FT OK);

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 48

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.40 FT_RestartInTask

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Restart the driver's IN task.

Definition
FT_STATUS FT_RestartInTask (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function is used to restart the driver's IN task (read) after it has been stopped by a call to
FT_StopInTask.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;
}
do {
ftStatus = FT StopInTask (ftHandle);
} while (ftStatus != FT OK);
//
// Do something - for example purge device
//
do {

ftStatus = FT RestartInTask(ftHandle);
} while (ftStatus != FT OK);

FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 49

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.41 FT_SetDeadmanTimeout

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function allows the maximum time in milliseconds that a USB request can remain outstanding to be
set.

Definition
FT_STATUS FT_SetDeadmanTimeout (FT_HANDLE ftHandle, DWORD dwDeadmanTimeout)

Parameters
ftHandle Handle of the device.
dwDeadmanTimeout Deadman timeout value in milliseconds. Default value is 5000.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

The deadman timeout is referred to in application note AN232B-10 Advanced Driver Options from the
FTDI web site as the USB timeout. It is unlikely that this function will be required by most users.

Example

FT_HANDLE ftHandle;
FT STATUS ftStatus;
DWORD dwDeadmanTimeout = 6000;

ftStatus = FT Open (0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT SetDeadmanTimeout (ftHandle, dwDeadmanTimeout) ;
if (ftStatus == FT_OK) {
// Set Deadman Timer to 6 seconds
}
else {
// FT_SetDeadmanTimeout FAILED!
}

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 50

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

3.42 FT_IoCtl

Undocumented function.

3.43 FT_SetWaitMask

Undocumented function.

3.44 FT_WaitOnMask

Undocumented function.

Copyright © 2010 Future Technology Devices International Limited 51

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

4 EEPROM Programming Interface Functions

FTDI device EEPROMs can be both read and programmed using the functions listed in this section.

4.1 FT_ReadEE

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Read a value from an EEPROM location.

Definition
FT_STATUS FT_ReadEE (FT_HANDLE ftHandle, DWORD dwWordOffset, LPWORD IpwValue)

Parameters

ftHandle Handle of the device.

dwWordOffset EEPROM location to read from.

IpwValue Pointer to the WORD value read from the EEPROM.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

EEPROMs for FTDI devices are organised by WORD, so each value returned is 16-bits wide.

4.2 FT_WriteEE

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Write a value to an EEPROM location.

Definition
FT_STATUS FT_WriteEE (FT_HANDLE ftHandle, DWORD dwWordOffset, WORD wValue)

Copyright © 2010 Future Technology Devices International Limited 52

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters

ftHandle Handle of the device.
dwWordOffset EEPROM location to read from.
wValue The WORD value write to the EEPROM.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks
EEPROMs for FTDI devices are organised by WORD, so each value written to the EEPROM is 16-bits wide.

4.3 FT_EraseEE

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Erases the device EEPROM.

Definition
FT_STATUS FT_EraseEE (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function will erase the entire contents of an EEPROM, including the user area. Note that the FT232R
and FT245R devices have an internal EEPROM that cannot be erased.

4.4 FT_EE_Read

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Copyright © 2010 Future Technology Devices International Limited 53

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Summary
Read the contents of the EEPROM.

Definition
FT_STATUS FT_EE_Read (FT_HANDLE ftHandle, PFT_PROGRAM_DATA pData)

Parameters
ftHandle Handle of the device.
pData Pointer to structure of type FT_PROGRAM_DATA.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function interprets the parameter pData as a pointer to a structure of type FT_PROGRAM_DATA that
contains storage for the data to be read from the EEPROM.

The function does not perform any checks on buffer sizes, so the buffers passed in the
FT_PROGRAM_DATA structure must be big enough to accommodate their respective strings (including
null terminators). The sizes shown in the following example are more than adequate and can be rounded
down if necessary. The restriction is that the Manufacturer string length plus the Description string
length is less than or equal to 40 characters.

Note that the DLL must be informed which version of the FT_PROGRAM_DATA structure is being used.
This is done through the Signaturel, Signature2 and Version elements of the structure. Signaturel
should always be 0x00000000, Signature2 should always be OxFFFFFFFF and Version can be set to use
whichever version is required. For compatibility with all current devices Version should be set to the
latest version of the FT_PROGRAM_DATA structure which is defined in FTD2XX.h.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus = FT Open (0, &ftHandle);
if (ftStatus != FT OK) {
// FT Open FAILED!
}
FT PROGRAM DATA ftData;
char ManufacturerBuf[32];
char ManufacturerIdBuf[1l6];
char DescriptionBuf([64];
char SerialNumberBuf[l6];

ftData.Signaturel = 0x00000000;

ftData.Signature2 = Oxffffffff;

ftData.Version = 0x00000002; // EEPROM structure with FT232R extensions
ftData.Manufacturer = ManufacturerBuf;

ftData.ManufacturerId = ManufacturerIdBuf;

ftData.Description = DescriptionBuf;

ftData.SerialNumber = SerialNumberBuf;

ftStatus = FT EE Read(ftHandle, &ftData);
if (ftStatus == FT_OK) {
// FT_EE Read OK, data is available in ftData
}
else {
// FT_EE Read FAILED!
}
FT Close(ftHandle);

Copyright © 2010 Future Technology Devices International Limited 54

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

4.5 FT_EE_ReadEx

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Read the contents of the EEPROM and pass strings separately.

Definition

FT_STATUS FT_EE_ReadEx (FT_HANDLE ftHandle, PFT_PROGRAM_DATA pData,
char *Manufacturer, char *Manufacturerld, char *Description,
char *SerialNumber)

Parameters

ftHandle Handle of the device.

pData Pointer to structure of type FT_PROGRAM_DATA.

*Manufacturer Pointer to a null-terminated string containing the manufacturer
name.

*Manufacturerld Pointer to a null-terminated string containing the manufacturer

ID.

*Description Pointer to a null-terminated string containing the device
description.

*Seria/Numbber Pointer to a null-terminated string containing the device serial

number.

Return Value
FT_OK if successful, otherwise the return value is an FT error code.
Remarks

This variation of the standard FT_EE_Read function was included to provide support for languages such
as LabVIEW where problems can occur when string pointers are contained in a structure.

This function interprets the parameter pData as a pointer to a structure of type FT_PROGRAM_DATA that
contains storage for the data to be read from the EEPROM.

The function does not perform any checks on buffer sizes, so the buffers passed in the
FT_PROGRAM_DATA structure must be big enough to accommodate their respective strings (including
null terminators).

Note that the DLL must be informed which version of the FT_PROGRAM_DATA structure is being used.
This is done through the Signaturel, Signature2 and Version elements of the structure. Signaturel
should always be 0x00000000, Signature2 should always be OxFFFFFFFF and Version can be set to use
whichever version is required. For compatibility with all current devices Version should be set to the
latest version of the FT_PROGRAM_DATA structure which is defined in FTD2XX.h.

The string parameters in the FT_PROGRAM_DATA structure should be passed as DWORDs to avoid
overlapping of parameters. All string pointers are passed out separately from the FT_PROGRAM_DATA
structure.

Copyright © 2010 Future Technology Devices International Limited 55

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

4.6 FT_EE_Program

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Program the EEPROM.

Definition
FT_STATUS FT_EE_Program (FT_HANDLE ftHandle, PFT_PROGRAM_DATA pData)

Parameters
ftHandle Handle of the device.
pData Pointer to structure of type FT_PROGRAM_DATA.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function interprets the parameter pData as a pointer to a structure of type FT_PROGRAM_DATA that
contains the data to write to the EEPROM. The data is written to EEPROM, then read back and verified.

If the SerialNumber field in FT_PROGRAM_DATA is NULL, or SerialNumber points to a NULL string, a
serial number based on the Manufacturerld and the current date and time will be generated. The
Manufacturer string length plus the Description string length must be less than or equal to 40 characters.

Note that the DLL must be informed which version of the FT_PROGRAM_DATA structure is being used.
This is done through the Signaturel, Signature2 and Version elements of the structure. Signaturel
should always be 0x00000000, Signature2 should always be OxFFFFFFFF and Version can be set to use
whichever version is required. For compatibility with all current devices Version should be set to the
latest version of the FT_PROGRAM_DATA structure which is defined in FTD2XX.h.

If pData is NULL, the structure version will default to 0 (original BM series) and the device will be
programmed with the default data:

Copyright © 2010 Future Technology Devices International Limited 56

o —

&7 FTDI Document Reference No.: FT_000071
vy
'r. . D2XX Programmer's Guide Version 1.03
S Chip
- Clearance No.: FTDI#170
Example

This example shows how to program the EEPROM of an FT232B device. Other parameters would need to
be set up for other device types.

// Version 2 structure for programming a BM device.
// Other elements would need non-zero values for FT2232, FT232R or FT245R devices.

FT PROGRAM DATA ftData = {
0x00000000,
OxXFFFFFFFF,
0x00000002,
0x0403,
0x6001,

" FTDI " ,

"FT",

"USB HS Serial Converter", //
"FTO00001",

44,
1,
4
r
4
4
4

I4

P OoOoOOoOkRFrEKFOo

’

0,

0x0110

!/
//
!/

(@]
N SN SN SN N~ O~

~

N N SN SN S S~ o~

cNeoNoNoNeoNoNoNoNoNoNoNolNolNoNolNoNo]
~

~

(@]
~

!/
!/
//

(@]
N N SN SN S~ O~

~

N N SN S N~ O~

cNeoNoBoNoNoNoNoNoNoNoNolNolNo]
~

~

FT2232C extensions

Mo~
o
~

FT232R extensions

Header - must be 0x00000000
Header - must be Oxffffffff
Header - FT PROGRAM DATA version
// VID
// PID
// Manufacturer
Manufacturer ID
Description
Serial Number
MaxPower
PnP
SelfPowered
RemoteWakeup
non-zero if Rev4 chip, zero otherwise
non-zero if in endpoint is isochronous
non-zero if out endpoint is isochronous
non-zero if pull down enabled
non-zero if serial number to be used
non-zero if chip uses USBVersion
BCD (0x0200 => USB2)

(Enabled if Version = 1 or Version = 2)

(Enabled

non-zero if Rev5 chip, zero otherwise
non-zero if in endpoint is isochronous
non-zero if in endpoint is isochronous
non-zero if out endpoint is isochronous
non-zero if out endpoint is isochronous
non-zero if pull down enabled

non-zero if serial number to be used
non-zero if chip uses USBVersion

BCD (0x0200 => USB2)

non-zero if interface is high current
non-zero if interface is high current
non-zero if interface is 245 FIFO

non-zero if interface is 245 FIFO CPU target
non-zero if interface is Fast serial
non-zero if interface is to use VCP drivers
non-zero if interface is 245 FIFO

non-zero if interface is 245 FIFO CPU target
non-zero if interface is Fast serial
non-zero if interface is to use VCP drivers

if Version = 2)

Use External Oscillator

High Drive I/Os

Endpoint size

non-zero if pull down enabled
non-zero if serial number to be used
non-zero if invert TXD
non-zero if invert RXD
non-zero if invert RTS
non-zero if invert CTS
non-zero if invert DTR
non-zero if invert DSR
non-zero if invert DCD
non-zero if invert RI

Cbus Mux control

Cbus Mux control

Copyright © 2010 Future Technology Devices International Limited 57

FTDI Document Reference No.: FT_000071
Ch D2XX Programmer's Guide Version 1.03
lp Clearance No.: FTDI#170

’ // Cbus Mux control
’ // Cbus Mux control
’ // Cbus Mux control
// non-zero if using D2XX drivers
bi
FT HANDLE ftHandle;

FT STATUS ftStatus = FT Open(0, &ftHandle);

if (ftStatus == FT OK) {
ftStatus = FT EE Program(ftHandle, &ftData);
if (ftStatus == FT OK) {

// FT_EE Program OK!
}
else {
// FT_EE Program FAILED!

}
FT Close (ftHandle);

4.7 FT_EE_ProgramEx

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Program the EEPROM and pass strings separately.

Definition

FT_STATUS FT_EE_ProgramEx (FT_HANDLE ftHandle, PFT_PROGRAM_DATA pData,
char *Manufacturer, char *Manufacturerld,
char *Description, char *SerialNumber)

Parameters
ftHandle Handle of the device.
pData Pointer to structure of type FT_PROGRAM_DATA.
*Manufacturer Pointer to a null-terminated string containing the manufacturer
name.
*Manufacturerld Pointer to a null-terminated string containing the manufacturer ID.
*Description Pointer to a null-terminated string containing the device
description.
*SerialNumber] Pointer to a null-terminated string containing the device serial
number.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 58

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Remarks

This variation of the FT_EE_Program function was included to provide support for languages such as
LabVIEW where problems can occur when string pointers are contained in a structure.

This function interprets the parameter pData as a pointer to a structure of type FT_PROGRAM_DATA that
contains the data to write to the EEPROM. The data is written to EEPROM, then read back and verified.

The string pointer parameters in the FT_PROGRAM_DATA structure should be allocated as DWORDs to
avoid overlapping of parameters. The string parameters are then passed in separately.

If the SerialNumber field is NULL, or SerialNumber points to a NULL string, a serial number based on the
Manufacturerld and the current date and time will be generated. The Manufacturer string length plus the
Description string length must be less than or equal to 40 characters.

Note that the DLL must be informed which version of the FT_PROGRAM_DATA structure is being used.
This is done through the Signaturel, Signature2 and Version elements of the structure. Signaturel
should always be 0x00000000, Signature2 should always be OxFFFFFFFF and Version can be set to use
whichever version is required. For compatibility with all current devices Version should be set to the
latest version of the FT_PROGRAM_DATA structure which is defined in FTD2XX.h.

If pData is NULL, the structure version will default to 0 (original BM series) and the device will be
programmed with the default data:

4.8 FT_EE_UASize

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Get the available size of the EEPROM user area.

Definition
FT_STATUS FT_EE_UASizeWrite (FT_HANDLE ftHandle, LPDWORD IpdwSize)

Parameters
ftHandle Handle of the device.
IpdwSize Pointer to a DWORD that receives the available size, in bytes, of

the EEPROM user area.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

The user area of an FTDI device EEPROM is the total area of the EEPROM that is unused by device
configuration information and descriptors. This area is available to the user to store information specific
to their application. The size of the user area depends on the length of the Manufacturer,
Manufacturerld, Description and SerialNumber strings programmed into the EEPROM.

Copyright © 2010 Future Technology Devices International Limited 59

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT_Open FAILED!
}

DWORD EEUA Size;

ftStatus = FT EE UASize (ftHandle, &EEUA Size);
if (ftStatus == FT OK) {

// FT_EE UASize OK

// EEUA_Size contains the size, in bytes, of the EEUA
t

else {
// FT_EE UASize FAILED!

t
FT Close (ftHandle);

4.9 FT_EE_UARead

Supported Operating Systems

Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Read the contents of the EEPROM user area.

Definition

FT_STATUS FT_EE_UARead (FT_HANDLE ftHandle, PUCHAR pucData, DWORD dwDatalen,
LPDWORD IpdwBytesRead)

Parameters

ftHandle Handle of the device.

pucData Pointer to a buffer that contains storage for data to be read.

dwDatalen Size, in bytes, of buffer that contains storage for the data to be
read.

IpdwBytesRead Pointer to a DWORD that receives the number of bytes read.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function interprets the parameter pucData as a pointer to an array of bytes of size dwDatalLen that
contains storage for the data to be read from the EEPROM user area. The actual number of bytes read is
stored in the DWORD referenced by IpdwBytesRead.

Copyright © 2010 Future Technology Devices International Limited 60

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

If dwDatalen is less than the size of the EEPROM user area, then dwDatalen bytes are read into the
buffer. Otherwise, the whole of the EEPROM user area is read into the buffer. The available user area
size can be determined by calling FT_EE_UASize.

An application should check the function return value and IpdwBytesRead when FT_EE_UARead returns.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT_Open FAILED!
}

unsigned char Buffer[64];
DWORD BytesRead;

ftStatus = FT EE UARead(ftHandle, Buffer, 64, &BytesRead);
if (ftStatus == FT OK) {

// FT_EE UARead OK

// User Area data stored in Buffer

// Number of bytes read from EEUA stored in BytesRead
}

else {
/ FT_EE UARead FAILED!

t
FT Close (ftHandle);

4.10 FT_EE_UAWrite

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary
Write data into the EEPROM user area.

Definition
FT_STATUS FT_EE_UAWTrite (FT_HANDLE ftHandle, PUCHAR pucData, DWORD dwDatalen)

Parameters

ftHandle Handle of the device.

pucData Pointer to a buffer that contains the data to be written.
dwDatalen Size, in bytes, of buffer that contains storage for the data to be

read.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Copyright © 2010 Future Technology Devices International Limited 61

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Remarks

This function interprets the parameter pucData as a pointer to an array of bytes of size dwDatalLen that
contains the data to be written to the EEPROM user area. It is a programming error for dwDatalen to be
greater than the size of the EEPROM user area. The available user area size can be determined by calling
FT_EE_UASize.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus = FT_Open(O, &ftHandle) ;

if (ftStatus != FT OK) {
// FT Open FAILED!
}

char *buffer = "Hello, World";

ftStatus = FT EE UAWrite (ftHandle, (unsigned char*)buffer, 12);
if (ftStatus != FT OK) {
// FT_EE UAWRITE failed
t
else {
// FT_EE UAWRITE failed
t

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 62

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

5 Extended API Functions

The extended API functions do not apply to FTBU232AM or FT8U245AM devices. FTDI's other USB-UART
and USB-FIFO ICs (the FT2232H, FT4232H, FT232R, FT245R, FT2232, FT232B and FT245B) do support
these functions. Note that there is device dependence in some of these functions.

5.1 FT_SetLatencyTimer

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Set the latency timer value.

Definition
FT_STATUS FT_SetLatencyTimer (FT_HANDLE ftHandle, UCHAR ucTimer)

Parameters
ftHandle Handle of the device.
ucTimer Required value, in milliseconds, of latency timer. Valid range is

2 - 255,

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining
data from the receive buffer was fixed at 16 ms. In all other FTDI devices, this timeout is programmable
and can be set at 1 ms intervals between 2ms and 255 ms. This allows the device to be better optimized
for protocols requiring faster response times from short data packets.

Copyright © 2010 Future Technology Devices International Limited 63

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
UCHAR LatencyTimer = 10;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT SetLatencyTimer (ftHandle, LatencyTimer);
if (ftStatus == FT OK) {
// LatencyTimer set to 10 milliseconds

}

else {
// FT_SetLatencyTimer FAILED!
}

FT Close(ftHandle);

5.2 FT_GetLatencyTimer

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Get the current value of the latency timer.

Definition
FT_STATUS FT_GetLatencyTimer (FT_HANDLE ftHandle, PUCHAR pucTimer)

Parameters
ftHandle Handle of the device.
pucTimer Pointer to unsigned char to store latency timer value.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used to flush remaining
data from the receive buffer was fixed at 16 ms. In all other FTDI devices, this timeout is programmable
and can be set at 1 ms intervals between 2ms and 255 ms. This allows the device to be better optimized
for protocols requiring faster response times from short data packets.

Copyright © 2010 Future Technology Devices International Limited 64

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
UCHAR LatencyTimer;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT GetLatencyTimer (ftHandle, &LatencyTimer);
if (ftStatus == FT OK) {
// LatencyTimer contains current value

}

else {
// FT_GetLatencyTimer FAILED!
}

FT Close(ftHandle);

5.3 FT_SetBitMode

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Enables different chip modes.

Definition
FT_STATUS FT_SetBitmode (FT_HANDLE ftHandle, UCHAR ucMask, UCHAR ucMode)

Parameters

ftHandle Handle of the device.

ucMask Required value for bit mode mask. This sets up which bits are inputs and outputs. A bit
value of 0 sets the corresponding pin to an input, a bit value of 1 sets the corresponding pin to an
output.

In the case of CBUS Bit Bang, the upper nibble of this value controls which pins are inputs and
outputs, while the lower nibble controls which of the outputs are high and low.

ucMode Mode value. Can be one of the following:
0x0 = Reset
0x1 = Asynchronous Bit Bang

0x2 = MPSSE (FT2232 devices only)

0x4 = Synchronous Bit Bang (FT232R, FT245R and FT2232 devices only)

0x8 = MCU Host Bus Emulation Mode (FT4232H, FT2232H and FT2232 devices only)
0x10 = Fast Opto-Isolated Serial Mode (FT4232H, FT2232H and FT2232 devices only)

Copyright © 2010 Future Technology Devices International Limited 65

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

0x20 = CBUS Bit Bang Mode (FT232R devices only)

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

For a description of available bit modes for the FT232R, see the application note "Bit Bang Modes for the
FT232R and FT245R".

For a description of available bit modes for the FT2232, see the application note "Bit Mode Functions for
the FT2232".

For a description of Bit Bang Mode for the FT232B and FT245B, see the application note "FT232B/FT245B
Bit Bang Mode".

Application notes are available for download from the FTDI website.

Note that to use CBUS Bit Bang for the FT232R, the CBUS must be configured for CBUS Bit Bang in the
EEPROM.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
UCHAR Mask Oxff;
UCHAR Mode 1; // Set asynchronous bit-bang mode

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT SetBitMode (ftHandle, Mask, Mode);
if (ftStatus == FT OK) {
// O0xff written to device

}

else {
// FT SetBitMode FAILED!
}

FT Close(ftHandle);

5.4 FT_GetBitMode

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the instantaneous value of the data bus.

Copyright © 2010 Future Technology Devices International Limited 66

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition
FT_STATUS FT_GetBitmode (FT_HANDLE ftHandle, PUCHAR pucMode)

Parameters
ftHandle Handle of the device.
pucMode Pointer to unsigned char to store the instantaneous data bus

value.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

For a description of available bit modes for the FT232R, see the application note "Bit Bang Modes for the
FT232R and FT245R".

For a description of available bit modes for the FT2232, see the application note "Bit Mode Functions for
the FT2232".

For a description of Bit Bang Mode for the FT232B and FT245B, see the application note "FT232B/FT245B
Bit Bang Mode".

These application notes are available for download from the FTDI website.

Example

FT HANDLE ftHandle;
UCHAR BitMode;
FT STATUS ftStatus;

ftStatus = FT Open(0, &ftHandle);

if (ftStatus != FT _OK) {
// FT Open failed
return;

}

ftStatus = FT GetBitMode (ftHandle, &BitMode);
if (ftStatus == FT OK) {
// BitMode contains current value

}

else {
// FT_GetBitMode FAILED!

}

FT Close (ftHandle);

5.5 FT_SetUSBParameters

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Copyright © 2010 Future Technology Devices International Limited 67

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Summary

Set the USB request transfer size.

Definition

FT_STATUS FT_SetUSBParameters (FT_HANDLE ftHandle, DWORD dwlInTransferSize, DWORD
dwOutTransferSize)

Parameters

ftHandle Handle of the device.
dwliInTransferSize Transfer size for USB IN request.
dwOutTransferSize Transfer size for USB OUT request.

Return Value

FT_OK if successful, otherwise the return value is an FT error code.

Remarks

This function can be used to change the transfer sizes from the default transfer size of 4096 bytes to
better suit the application requirements. Transfer sizes must be set to a multiple of 64 bytes between 64
bytes and 64k bytes.

When FT_SetUSBParameters is called, the change comes into effect immediately and any data that was
held in the driver at the time of the change is lost.

Note that, at present, only dwiInTransferSize is supported.

Example

FT HANDLE ftHandle;
FT STATUS ftStatus;
DWORD InTransferSize = 16384;

ftStatus = FT Open (0, &ftHandle);

if (ftStatus != FT OK) {
// FT Open failed
return;

}

ftStatus = FT SetUSBParameters (ftHandle, InTransferSize, 0);
if (ftStatus == FT OK) {

// In transfer size set to 16 Kbytes
}

else {
// FT_SetUSBParameters FAILED!
}

FT Close (ftHandle);

Copyright © 2010 Future Technology Devices International Limited 68

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

6 FT-Win32 API Functions

The functions in this section are supplied to ease porting from a Win32 serial port application. These
functions are supported under non-Windows platforms to assist with porting existing applications from
Windows. Note that classic D2XX functions and the Win32 D2XX functions should not be mixed unless
stated.

6.1 FT_W32_CreateFile

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Opens the specified device and return a handle which will be used for subsequent accesses. The device
can be specified by its serial number, device description, or location.

This function must be used if overlapped I/0 is required.

Definition

FT_HANDLE FT_W32_CreateFile (PVOID pvArgl, DWORD dwAccess, DWORD dwShareMode,
LPSECURITY_ATTRIBUTES IpSecurityAttributes,
DWORD dwCreate, DWORD dwAttrsAndFlags,
HANDLE hTemplate)

Parameters

pVvArgl Meaning depends on the value of dwAttrsAndFlags. Can be a pointer to a null terminated string
that contains the description or serial number of the device, or can be the location of the device. These
values can be obtained from the FT_CreateDevicelnfolList, FT_GetDevicelnfoDetail or FT_ListDevices
functions.

dwAccess Type of access to the device. Access can be GENERIC_READ, GENERIC_WRITE

or both. Ignored in Linux.

dwShareMode How the device is shared. This value must be set to 0.

IpSecurityAttributes This parameter has no effect and should be set to NULL.

dwCreate This parameter must be set to OPEN_EXISTING. Ignored in Linux.

dwAttrsAndFlags File attributes and flags. This parameter is a combination of
FILE_ATTRIBUTE_NORMAL, FILE_FLAG_OVERLAPPED if overlapped I/0O is used,

FT _OPEN BY SERIAL NUMBER if IpszName is the device’s serial number, and

FT_OPEN_ BY DESCRIPTION if /pszName is the device’s description.

hTemplate This parameter must be NULL.
Return Value

If the function is successful, the return value is a handle.
If the function is unsuccessful, the return value is the Win32 error code INVALID_HANDLE_VALUE.

Copyright © 2010 Future Technology Devices International Limited 69

&7 FTDI Document Reference No.: FT_000071

¥y
I

i CI . D2XX Programmer's Guide Version 1.03
A
lp Clearance No.: FTDI#170

LN
-

Remarks

The meaning of pvArgl depends on dwAttrsAndFlags: if FT_OPEN BY SERIAL NUMBER or

FT _OPEN BY DESCRIPTION is set in dwAttrsAndFlags, pvArgl contains a pointer to a null terminated
string that contains the device's serial number or description; if FT_OPEN BY LOCATION is set in
dwAttrsAndFlags, pvArgl is interpreted as a value of type long that contains the location ID of the device.

dwAccess can be GENERIC_READ, GENERIC_WRITE or both; dwShareMode must be set to 0;
IpSecurityAttributes must be set to NULL; dwCreate must be set to OPEN_EXISTING; dwAttrsAndFlags is
a combination of FILE_ATTRIBUTE_NORMAL, FILE_FLAG_OVERLAPPED if overlapped I/0 is used,

FT _OPEN BY SERIAL NUMBER or FT_OPEN BY DESCRIPTION or FT _OPEN BY LOCATION; hTemplate
must be NULL.

Note that Linux, Mac OS X and Windows CE do not support overlapped IO or location IDs.

Examples

The examples that follow use these variables.
FT STATUS ftStatus;

FT HANDLE ftHandle;

char Buf[64];

1. Open a device for overlapped I/O using its serial humber
ftStatus = FT_ListDevices (0,Buf,FT LIST BY INDEX|FT OPEN BY SERIAL NUMBER);
ftHandle = FT W32 CreateFile (Buf,GENERIC READ|GENERIC WRITE,O,O0,

OPEN_EXISTING,

FILE ATTRIBUTE NORMAL | FILE FLAG OVERLAPPED |

FT OPEN BY SERIAL NUMBER,
0);

if (ftHandle == INVALID HANDLE VALUE)
; // FT_W32 CreateDevice failed

2. Open a device for non-overlapped I/O using its description

ftStatus = FT ListDevices (0,Buf,FT LIST BY INDEX|FT OPEN BY DESCRIPTION);

ftHandle = FT W32 CreateFile (Buf,GENERIC READ|GENERIC WRITE,O,O0,
OPEN_EXISTING,

FILE ATTRIBUTE NORMAL | FT OPEN BY DESCRIPTION,
0);

if (ftHandle == INVALID HANDLE VALUE)
; // FT_W32 CreateDevice failed

3. Open a device for non-overlapped I/0 using its location

long locID;

ftStatus = FT_ListDevices (0, &locID,FT_LIST BY INDEX|FT OPEN BY LOCATION);

ftHandle = FT W32 CreateFile ((PVOID) locID,GENERIC READ|GENERIC WRITE,O,O0,
OPEN EXISTING,
FILE ATTRIBUTE NORMAL | FT OPEN BY LOCATION,
0);

if (ftHandle == INVALID_HANDLE_VALUE)
; // FT W32 CreateDevice failed

Copyright © 2010 Future Technology Devices International Limited 70

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

6.2 FT_W32_CloseHandle

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Close the specified device handle.

Definition
BOOL FT_W32_CloseHandle (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
This example shows how to close a device after opening it for non-overlapped I/O using its description.

FT STATUS ftStatus;
FT HANDLE ftHandle;
char Buf[64];

ftStatus = FT ListDevices (0,Buf,FT_LIST BY INDEX|FT OPEN BY DESCRIPTION);
ftHandle = FT W32 CreateFile (Buf,GENERIC READ|GENERIC WRITE,O,O0,
OPEN_EXISTING,
FILE ATTRIBUTE NORMAL | FT OPEN BY DESCRIPTION,
0);
if (ftHandle == INVALID HANDLE VALUE) {
// FT W32 CreateDevice failed
1
else {
// FT W32 CreateFile OK, so do some work, and eventually ...
FT W32 CloseHandle (ftHandle) ;

Copyright © 2010 Future Technology Devices International Limited 71

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

6.3 FT_W32_ReadFile

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Read data from the device.

Definition

BOOL FT_W32_ReadFile (FT_HANDLE ftHandle, LPVOID IpBuffer, DWORD dwBytesToRead,
LPDWORD IpdwBytesReturned, LPOVERLAPPED IpOverlapped)

Parameters

ftHandle Handle of the device.

IpBuffer Pointer to a buffer that receives the data from the device.

dwBytesToRead Number of bytes to read from the device.

IpdwBytesReturned Pointer to a variable that receives the nhumber of bytes read from
the device.

IpOverlapped Pointer to an overlapped structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function supports both non-overlapped and overlapped I/0, except under Linux, Mac OS X and
Windows CE where only non-overlapped IO is supported.

Non-overlapped 1I/0
The parameter, IpOverlapped, must be NULL for non-overlapped 1/0.
This function always returns the number of bytes read in IpdwBytesReturned.

This function does not return until dwBytesToRead have been read into the buffer. The number of bytes
in the receive queue can be determined by calling FT_GetStatus or FT_GetQueueStatus, and passed as
dwBytesToRead so that the function reads the device and returns immediately.

When a read timeout has been setup in a previous call to FT_W32_SetCommTimeouts, this function
returns when the timer expires or dwBytesToRead have been read, whichever occurs first. If a timeout
occurred, any available data is read into /pBuffer and the function returns a non-zero value.

An application should use the function return value and IpdwBytesReturned when processing the buffer.

If the return value is non-zero and IpdwBytesReturned is equal to dwBytesToRead then the function has

completed normally. If the return value is non-zero and IpdwBytesReturned is less then dwBytesToRead
then a timeout has occurred, and the read request has been partially completed. Note that if a timeout

occurred and no data was read, the return value is still non-zero.

Copyright © 2010 Future Technology Devices International Limited 72

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

A return value of FT_IO_ ERROR suggests an error in the parameters of the function, or a fatal error like
USB disconnect has occurred.

Overlapped I/0

When the device has been opened for overlapped 1I/0O, an application can issue a request and perform
some additional work while the request is pending. This contrasts with the case of non-overlapped I/0 in
which the application issues a request and receives control again only after the request has been
completed.

The parameter, IpOverlapped, must point to an initialized OVERLAPPED structure.

If there is enough data in the receive queue to satisfy the request, the request completes immediately
and the return code is non-zero. The number of bytes read is returned in IpdwBytesReturned.

If there is not enough data in the receive queue to satisfy the request, the request completes
immediately, and the return code is zero, signifying an error. An application should call
FT_W232_GetLastError to get the cause of the error. If the error code is ERROR_IO_PENDING, the
overlapped operation is still in progress, and the application can perform other processing. Eventually,
the application checks the result of the overlapped request by calling FT_W32_GetOverlappedResult.

If successful, the number of bytes read is returned in IpdwBytesReturned.

Example

1. This example shows how to read 256 bytes from the device using non-overlapped I/0.

FT HANDLE ftHandle; // setup by FT W32 CreateFile for non-overlapped i/o
char Buf[256];

DWORD dwToRead = 256;

DWORD dwRead;

if (FT W32 ReadFile(ftHandle, Buf, dwToRead, &dwRead, &osRead)) {
if (dwToRead == dwRead) {
// FT W32 ReadFile OK
}
else{
// FT W32 ReadFile timeout
}

else{
// FT_W32 ReadFile failed

2. This example shows how to read 256 bytes from the device using overlapped I/0.

FT HANDLE ftHandle; // setup by FT W32 CreateFile for overlapped i/o
char Buf[256];

DWORD dwToRead = 256;

DWORD dwRead;

OVERLAPPED osRead = { 0 };

osRead.hEvent = CreateEvent (NULL, FALSE, FALSE, NULL);

if (!FT W32 ReadFile(ftHandle, Buf, dwToRead, &dwRead, &osRead)) {
if (FT W32 GetLastError (ftHandle) == ERROR IO PENDING) {
// write is delayed so do some other stuff until
if (!FT W32 GetOverlappedResult (ftHandle, &osRead, &dwRead, FALSE)) {
/ error

}
else {
if (dwToRead == dwRead) {
// FT W32 ReadFile OK
}
else{
// FT W32 ReadFile timeout
}

Copyright © 2010 Future Technology Devices International Limited 73

Clearance No.: FTDI#170

// FT W32 ReadFile OK

CloseHandle (osRead.hEvent);

6.4 FT_W32_WriteFile

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Write data to the device.

Definition

BOOL FT_W32_WriteFile (FT_HANDLE ftHandle, LPVOID IpBuffer, DWORD dwBytesToWrite,
LPDWORD IpdwBytesWritten, LPOVERLAPPED IpOverlapped)

Parameters

ftHandle Handle of the device.

IpBuffer Pointer to the buffer that contains the data to write to the device.

dwBytesToWrite Number of bytes to be written to the device.

IpdwBytesWritten Pointer to a variable that receives the number of bytes written to
the device.

IpOverlapped Pointer to an overlapped structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function supports both non-overlapped and overlapped I/0, except under Linux, Mac OS X and
Windows CE where only non-overlapped IO is supported.

Non-overlapped 1/0
The parameter, IpOverlapped, must be NULL for non-overlapped I/0.
This function always returns the number of bytes written in IpdwBytesWritten.

This function does not return until dwBytesToWrite have been written to the device.

Copyright © 2010 Future Technology Devices International Limited 74

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

When a write timeout has been setup in a previous call to FT_W32_SetCommTimeouts, this function
returns when the timer expires or dwBytesToWrite have been written, whichever occurs first. If a timeout
occurred, IpdwBytesWritten contains the number of bytes actually written, and the function returns a
non-zero value.

An application should always use the function return value and IpdwBytesWritten. If the return value is
non-zero and IpdwBytesWritten is equal to dwBytesToWrite then the function has completed normally. If
the return value is non-zero and IpdwBytesWritten is less then dwBytesToWrite then a timeout has
occurred, and the write request has been partially completed. Note that if a timeout occurred and no data
was written, the return value is still non-zero.

Overlapped I/0

When the device has been opened for overlapped 1/0, an application can issue a request and perform
some additional work while the request is pending. This contrasts with the case of non-overlapped I/0 in
which the application issues a request and receives control again only after the request has been
completed.

The parameter, IpOverlapped, must point to an initialized OVERLAPPED structure.

This function completes immediately, and the return code is zero, signifying an error. An application
should call FT_W32_GetLastError to get the cause of the error. If the error code is ERROR_IO_PENDING,
the overlapped operation is still in progress, and the application can perform other processing.
Eventually, the application checks the result of the overlapped request by calling
FT_W32_GetOverlappedResult.

If successful, the number of bytes written is returned in IpdwBytesWritten.

Example

1. This example shows how to write 128 bytes to the device using non-overlapped I/0.

FT HANDLE ftHandle; // setup by FT W32 CreateFile for overlapped i/o
char Buf[128]; // contains data to write to the device

DWORD dwToWrite = 128;

DWORD dwWritten;

if (FT W32 WriteFile(ftHandle, Buf, dwToWrite, &dwWritten, &osWrite)) {
if (dwToWrite == dwWritten) {
// FT W32 WriteFile OK
}
else{
// FT W32 WriteFile timeout
}
}
else{
// FT_W32 WriteFile failed

}

2. This example shows how to write 128 bytes to the device using overlapped I/0.

FT HANDLE ftHandle; // setup by FT W32 CreateFile for overlapped i/o
char Buf[128]; // contains data to write to the device

DWORD dwToWrite = 128;

DWORD dwWritten;

OVERLAPPED osWrite = { 0 };

if (!FT W32 WriteFile(ftHandle, Buf, dwToWrite, &dwWritten, &osWrite)) {
if (FT W32 GetLastError (ftHandle) == ERROR IO PENDING) {

// write 1is delayed so do some other stuff until

if (!FT W32 GetOverlappedResult (ftHandle, &osWrite, &dwWritten, FALSE)) {
// error

}

else {
if (dwToWrite == dwWritten) {

// FT W32 WriteFile OK

}

else{

Copyright © 2010 Future Technology Devices International Limited 75

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

// FT W32 WriteFile timeout

}
else {

// FT W32 WriteFIle OK
}

6.5 FT_W32_GetOverlappedResult

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the result of an overlapped operation.

Definition

BOOL FT_W32_GetOverlappedResult (FT_HANDLE ftHandle, LPOVERLAPPED I/pOverlapped,
LPDWORD IpdwBytesTransferred, BOOL bWait)

Parameters

ftHandle Handle of the device.

IpOverlapped Pointer to an overlapped structure.

IpdwBytesTransferred Pointer to a variable that receives the number of bytes transferred

during the overlapped operation.

bWait Set to TRUE if the function does not return until the operation has been completed.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function is used with overlapped I/O and so is not supported in Linux, Mac OS X or Windows CE. For
a description of its use, see

Copyright © 2010 Future Technology Devices International Limited 76

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

FT_W32_ReadFile and FT_W32_WriteFile.

6.6 FT_W32_EscapeCommFunction

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Perform an extended function.

Definition
BOOL FT_W32_EscapeCommFunction (FT_HANDLE ftHandle, DWORD dwFunc)

Parameters
ftHandle Handle of the device.
dwfFunc The extended function to perform can be one of the following values:

CLRDTR - Clear the DTR signal
CLRRTS - Clear the RTS signal

SETDTR - Set the DTR signal

SETRTS - Set the RTS signal
SETBREAK - Set the BREAK condition
CLRBREAK - Clear the BREAK condition

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
FT HANDLE ftHandle; // setup by FT W32 CreateFile

FT W32 EscapeCommFunction (ftHandle,CLRDTS); // Clear the DTR signal
FT W32 EscapeCommFunction (ftHandle, SETRTS); // Set the RTS signal

6.7 FT_W32_GetCommModemStatus

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Copyright © 2010 Future Technology Devices International Limited 77

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Windows CE (4.2 and later)

Summary

This function gets the current modem control value.

Definition
BOOL FT_W32_GetCommModemStatus (FT_HANDLE ftHandle, LPDWORD /pdwStat)

Parameters
ftHandle Handle of the device.
IpdwStat Pointer to a variable to contain modem control value. The modem

control value can be a combination of the following:
MS_CTS_ON - Clear To Send (CTS) is on
MS_DSR_ON - Data Set Ready (DSR) is on
MS_RING_ON - Ring Indicator (RI) is on
MS_RLSD_ON - Receive Line Signal Detect (RLSD) is on

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
FT_HANDLE ftHandle; // setup by FT W32 CreateFile DWORD dwStatus;

if (FT_W32 GetCommModemStatus (ftHandle, &dwStatus)) {
// FT_W32 GetCommModemStatus ok
if (dwStatus & MS CTS ON)
; // CTS is on
if (dwStatus & MS DSR _ON)
; // DSR is on
if (dwStatus & MS RI ON)
; // RI is on
if (dwStatus & MS RLSD ON)
; // RLSD is on

else
; // FT_W32 GetCommModemStatus failed

6.8 FT_W32_SetupComm

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the read and write buffers.

Copyright © 2010 Future Technology Devices International Limited 78

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition

BOOL FT_W32_SetupComm (FT_HANDLE ftHandle, DWORD dwReadBufferSize,
DWORD dwWriteBufferSize)

Parameters

ftHandle Handle of the device.
dwReadBufferSize Length, in bytes, of the read buffer.
dwWriteBufferSize Length, in bytes, of the write buffer.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function has no effect. It is the responsibility of the driver to allocate sufficient storage for I/O
requests.

Copyright © 2010 Future Technology Devices International Limited 79

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

6.9 FT_W32_SetCommState

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the state of the device according to the contents of a device control block (DCB).

Definition
BOOL FT_W32_SetCommsState (FT_HANDLE ftHandle, LPFTDCB IpftDcb)

Parameters
ftHandle Handle of the device.
IpftDcb Pointer to an FTDCB structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example

FT HANDLE ftHandle; // setup by FT W32 CreateFile
FTDCB ftDCB;

if (FT_W32 GetCommState (ftHandle, &ftDCB)) {
// FT_W32 GetCommState ok, device state is in ftDCB
ftDCB.BaudRate = 921600; // Change the baud rate
if (FT W32 SetCommState (ftHandle, &ftDCB))
; // FT_W32 SetCommState ok
else
; // FT_W32 SetCommState failed

else
; // FT_W32 GetCommState failed

6.10 FT_W32_GetCommState

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)
Summary

This function gets the current device state.

Copyright © 2010 Future Technology Devices International Limited 80

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition
BOOL FT_W32_GetCommsState (FT_HANDLE ftHandle, LPFTDCB IpftDcb)

Parameters
ftHandle Handle of the device.
IpftDcb Pointer to an FTDCB structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

The current state of the device is returned in a device control block.

Example

FT HANDLE ftHandle; // setup by FT W32 CreateFile
FTDCB ftDCB;

if (FT W32 GetCommState (ftHandle, &ftDCB))

; // FT_W32 GetCommState ok, device state is in ftDCB
else

; // FT W32 GetCommState failed

6.11 FT_W32_SetCommTimeouts

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function sets the timeout parameters for I/O requests.

Definition
BOOL FT_W32_SetCommTimeouts (FT_HANDLE ftHandle, LPFTTIMEOUTS IpftTimeouts)

Parameters
ftHandle Handle of the device.
IpftTimeouts Pointer to an FTTIMEOUTS structure to store timeout information.

Return Value

If the function is successful, the return value is nonzero.

Copyright © 2010 Future Technology Devices International Limited 81

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

If the function is unsuccessful, the return value is zero.

Remarks
Timeouts are calculated using the information in the FTTIMEOUTS structure.

For read requests, the number of bytes to be read is multiplied by the total timeout multiplier, and added
to the total timeout constant. So, if TS is an FTTIMEOUTS structure and the number of bytes to read is
dwToRead, the read timeout, rdTO, is calculated as follows.

rdTO = (dwToRead * TS.ReadTotalTimeoutMultiplier) + TS.ReadTotalTimeoutConstant

For write requests, the number of bytes to be written is multiplied by the total timeout multiplier, and
added to the total timeout constant. So, if TS is an FTTIMEOUTS structure and the number of bytes to
write is dwToWrite, the write timeout, wrTO, is calculated as follows.

wrTO = (dwToWrite * TS.WriteTotalTimeoutMultiplier) + TS.WriteTotalTimeoutConstant

Linux and Mac OS X currently ignore the ReadIntervalTimeout, ReadTotalTimeoutMultiplier and
WriteTotalTimeoutMultiplier.

Example

FT_HANDLE ftHandle; // setup by FT W32 CreateFile
FTTIMEOUTS ftTS;

ftTS.ReadIntervalTimeout = 0;

ftTS.ReadTotalTimeoutMultiplier = 0;
ftTS.ReadTotalTimeoutConstant = 100;
ftTS.WriteTotalTimeoutMultiplier = 0;
ftTS.WriteTotalTimeoutConstant = 200;

if (FT W32 SetCommTimeouts (ftHandle, &ftTS))
; // FT W32 SetCommTimeouts OK

else
; // FT W32 SetCommTimeouts failed

6.12 FT_W32_GetCommTimeouts

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function gets the current read and write request timeout parameters for the specified device.

Definition
BOOL FT_W32_GetCommTimeouts (FT_HANDLE ftHandle, LPFTTIMEOUTS IpftTimeouts)

Copyright © 2010 Future Technology Devices International Limited 82

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Parameters
ftHandle Handle of the device.
IpftTimeouts Pointer to an FTTIMEOUTS structure to store timeout information.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

For an explanation of how timeouts are used, see FT_W32_SetCommTimeouts.

Example

FT HANDLE ftHandle; // setup by FT W32 CreateFile
FTTIMEOUTS ftTS;

if (FT W32 GetCommTimeouts (ftHandle, &ftTS))
; // FT W32 GetCommTimeouts OK

else
; // FT W32 GetCommTimeouts failed

6.13 FT_W32_SetCommBreak

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)
Summary

Puts the communications line in the BREAK state.

Definition
BOOL FT_W32_SetCommBreak (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
FT HANDLE ftHandle; // setup by FT W32 CreateFile

if (!FT_W32 SetCommBreak (ftHandle))

Copyright © 2010 Future Technology Devices International Limited 83

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

; // FT W32 SetCommBreak failed
else
; // FT W32 SetCommBreak OK

6.14 FT_W32_ClearCommBreak

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Puts the communications line in the non-BREAK state.

Definition
BOOL FT_W32_ClearCommBreak (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
FT HANDLE ftHandle; // setup by FT W32 CreateFile

if (!FT W32 ClearCommBreak (ftHandle)) {
// FT_W32 ClearCommBreak failed
}
else{
// FT W32 ClearCommBreak OK

}

6.15 FT_W32_SetCommMask

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function specifies events that the device has to monitor.

Copyright © 2010 Future Technology Devices International Limited 84

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition
BOOL FT_W32_SetCommMask (FT_HANDLE ftHandle, DWORD dwMask)

Parameters
ftHandle Handle of the device.
dwMask Mask containing events that the device has to monitor. This can

be a combination of the following:
EV_BREAK - BREAK condition detected
EV_CTS - Change in Clear To Send (CTS)
EV_DSR - Change in Data Set Ready (DSR)
EV_ERR - Error in line status
EV_RING - Change in Ring Indicator (RI)
EV_RLSD - Change in Receive Line Signal Detect (RLSD)
EV_RXCHAR - Character received
EV_RXFLAG - Event character received
EV_TXEMPTY - Transmitter empty

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function specifies the events that the device should monitor. An application can call the function
FT_W32_WaitCommEvent to wait for an event to occur.

Example

FT_HANDLE ftHandle; // setup by FT W32 CreateFile
DWORD dwMask = EV_CTS | EV_DSR;

if (!FT W32 SetCommMask (ftHandle, dwMask))
; // FT W32 SetCommMask failed
else
; // FT W32 SetCommMask OK

6.16 FT_W32_GetCommMask

Supported Operating Systems
Windows (2000 and later)

Summary

Retrieves the events that are currently being monitored by a device.

Definition

Copyright © 2010 Future Technology Devices International Limited 85

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

BOOL FT_W32_GetCommMask (FT_HANDLE ftHandle, LPDWORD IpdwEventMask)

Parameters

ftHandle Handle of the device.

IpdwEventMask Pointer to a location that receives a mask that contains the events
that are currently enabled. This parameter can be one or more of the following

values:

EV_BREAK - BREAK condition detected
EV_CTS - Change in Clear To Send (CTS)
EV_DSR - Change in Data Set Ready (DSR)

EV_ERR - Error in line status

EV_RING - Change in Ring Indicator (RI)

EV_RLSD - Change in Receive Line Signal Detect (RLSD)
EV_RXCHAR - Character received

EV_RXFLAG - Event character received

EV_TXEMPTY - Transmitter empty

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function returns events currently being monitored by the device.

is enabled by the FT_W32_SetCommMask function.

Example

FT HANDLE ftHandle; // setup by FT W32 CreateFile
DWORD dwMask;

if (!FT W32 GetCommMask (ftHandle, &dwMask))
; // FT_W32 GetCommMask failed

else
; // FT_W32 GetCommMask OK

6.17 FT_W32_WaitCommEvent

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function waits for an event to occur.

Event monitoring for these events

Copyright © 2010 Future Technology Devices International Limited 86

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Definition

BOOL FT_W32_SetupComm (FT_HANDLE ftHandle, LPDWORD IpdwEvent,
LPOVERLAPPED /pOverlapped)

Parameters

ftHandle Handle of the device.

IpdwEvent Pointer to a location that receives a mask that contains the events
that occurred.

IpOverlapped Pointer to an overlapped structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function supports both non-overlapped and overlapped I/0, except under Windows CE and Linux
where only non-overlapped IO is supported.

Non-overlapped 1I/0
The parameter, IpOverlapped, must be NULL for non-overlapped I/0.

This function does not return until an event that has been specified in a call to FT_W32_SetCommMask
has occurred. The events that occurred and resulted in this function returning are stored in IpdwEvent.

Overlapped I/0

When the device has been opened for overlapped I/0O, an application can issue a request and perform
some additional work while the request is pending. This contrasts with the case of non-overlapped I/0 in
which the application issues a request and receives control again only after the request has been
completed.

The parameter, IpOverlapped, must point to an initialized OVERLAPPED structure.

This function does not return until an event that has been specified in a call to FT_W32_SetCommMask
has occurred.

If an event has already occurred, the request completes immediately, and the return code is non-zero.
The events that occurred are stored in IpdwEvent.

If an event has not yet occurred, the request completes immediately, and the return code is zero,
signifying an error. An application should call FT_W32_GetlLastError to get the cause of the error. If the
error code is ERROR_IO_PENDING, the overlapped operation is still in progress, and the application can
perform other processing. Eventually, the application checks the result of the overlapped request by
calling FT_W32_GetOverlappedResult. The events that occurred and resulted in this function returning
are stored in IpdwEvent.

Copyright © 2010 Future Technology Devices International Limited 87

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

Examples

1. This example shows how to write 128 bytes to the device using non-overlapped I/0.

FT HANDLE ftHandle; // setup by FT W32 CreateFile for non-overlapped i/o
DWORD dwEvents;

if (FT W32 WaitCommEvent (ftHandle, &dwEvents, NULL))
; // FT W32 WaitCommEvents OK

else
; // FT W32 WaitCommEvents failed

2. This example shows how to write 128 bytes to the device using overlapped I/0.

FT _HANDLE ftHandle; // setup by FT W32 CreateFile for overlapped i/o
DWORD dwEvents;

DWORD dwRes;

OVERLAPPED osWait = { 0 };

if (!FT W32 WaitCommEvent (ftHandle, &dwEvents, &osWait)) {
if (FT W32 GetLastError (ftHandle == ERROR IO PENDING) {

// wait is delayed so do some other stuff until

if (!FT W32 GetOverlappedResult (ftHandle, &osWait, &dwRes, FALSE))
; // error

else
; // FT_W32 WaitCommEvent OK
// Events that occurred are stored in dwEvents

}
else {
// FT W32 WaitCommEvent OK
// Events that occurred are stored in dwEvents

6.18 FT_W32_PurgeComm

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

This function purges the device.

Definition
BOOL FT_W32_PurgeComm (FT_HANDLE ftHandle, DWORD dwFlags)

Parameters
ftHandle Handle of the device.
dwFlags Specifies the action to take. The action can be a combination of

the following:

PURGE_TXABORT - Terminate outstanding overlapped
writes

Copyright © 2010 Future Technology Devices International Limited 88

FTDI Document Reference No.: FT_000071
Ch D2XX Programmer's Guide Version 1.03
Ip Clearance No.: FTDI#170

PURGE_RXABORT - Terminate outstanding overlapped
reads

PURGE_TXCLEAR - Clear the transmit buffer
PURGE_RXCLEAR - Clear the receive buffer

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example
FT HANDLE ftHandle; // setup by FT W32 CreateFile

if (FT_W32_PurgeComm(ftHandle,PURGE_TXCLEARIPURGE_RXCLEAR))
; // FT W32 PurgeComm OK

else
; // FT W32 PurgeComm failed

6.19 FT_W32_GetLastError

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets the last error that occurred on the device.

Definition
DWORD FT_W32_GetLastError (FT_HANDLE ftHandle)

Parameters
ftHandle Handle of the device.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Remarks

This function is normally used with overlapped I/O and so is not supported in Windows CE. For a
description of its use, see

Copyright © 2010 Future Technology Devices International Limited 89

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

FT_W32_ReadFile and FT_W32_WriteFile.

In Linux and Mac OS X, this function returns a DWORD that directly maps to the FT Errors (for example
the FT_INVALID_HANDLE error number).

6.20 FT_W32_ClearCommError

Supported Operating Systems
Linux

Mac OS X (10.4 and later)

Windows (2000 and later)

Windows CE (4.2 and later)

Summary

Gets information about a communications error and get current status of the device.

Definition

BOOL FT_W32_ClearCommError (FT_HANDLE ftHandle, LPDWORD IpdwErrors,
LPFTCOMSTAT IpftComstat)

Parameters

ftHandle Handle of the device.

IpdwErrors Variable that contains the error mask.
IpftComstat Pointer to FTCOMSTAT structure.

Return Value
If the function is successful, the return value is nonzero.

If the function is unsuccessful, the return value is zero.

Example

static COMSTAT o0ldCS = {0};
static DWORD dwOldErrors = 0;

FT_HANDLE ftHandle; // setup by FT W32 CreateFile
COMSTAT newCS;

DWORD dwErrors;

BOOL bChanged = FALSE;

if (!FT W32 ClearCommError (ftHandle, &dwErrors, (FTCOMSTAT *)&newCsS))
; // FT W32 ClearCommError failed

if (dwErrors != dwOldErrors) {
bChanged = TRUE;
dwErrorsOld = dwErrors;

}
if (memcmp (&01dCS, &newCS, sizeof (FTCOMSTAT))) {
bChanged = TRUE;

0l1dCS = newCS;
}

if (bChanged) {

Copyright © 2010 Future Technology Devices International Limited 90

=7 FTDI Document Reference No.: FT_000071
v
'r. . D2XX Programmer's Guide Version 1.03
A Chip

- Clearance No.: FTDI#170

if (dwErrors & CE BREAK)
; // BREAK condition detected
if (dwErrors & CE FRAME)
; // Framing error detected
if (dwErrors & CE RXOVER)
; // Receive buffer has overflowed
if (dwErrors & CE TXFULL)
; // Transmit buffer full
if (dwErrors & CE_OVERRUN)
; // Character buffer overrun
if (dwErrors & CE RXPARITY)
; // Parity error detected
if (newCS.fCtsHold)
; // Transmitter waiting for CTS
if (newCS.fDsrHold)
; // Transmitter is waiting for DSR
if (newCS.fRlsdHold)
; // Transmitter is waiting for RLSD
if (newCS.fXoffHold)
; // Transmitter is waiting because XOFF was received
if (newCS.fXoffSent)
P/
if (newCS.fEof)
; // End of file character has been received
if (newCS.fTxim)
; // Tx immediate character queued for transmission
// newCS.cbInQue contains number of bytes in receive queue
// newCS.cbOutQue contains number of bytes in transmit queue

Copyright © 2010 Future Technology Devices International Limited 91

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

7 Contact Information
Head Office — Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH

United Kingdom

Tel: +44 (0) 141 429 2777

Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) supportl@ftdichip.com
E-mail (General Enquiries) adminl@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office - Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114

Taiwan , R.O.C.

Tel: +886 (0) 2 8791 3570

Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.supportl @ftdichip.com
E-mail (General Enquiries) tw.adminl@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office - Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600

Hillsboro, OR 97123-5803

USA

Tel: +1 (503) 547 0988

Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office — Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,

Shanghai, 200051

China

Tel: +86 21 62351596

Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com
Web Site URL http://www.ftdichip.com

Copyright © 2010 Future Technology Devices International Limited

92

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
http://www.ftdichip.com/
http://www.ftdichip.com/
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
http://www.ftdichip.com/
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
http://www.ftdichip.com/
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://www.ftdichip.com/

=7 FTDI Document Reference No.: FT_000071
r

L
A
LN
N\

Ch D2XX Programmer's Guide Version 1.03
lp Clearance No.: FTDI#170

Vinculum is part of Future Technology Devices International Ltd. Neither the whole nor any part of the information contained in, or the
product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of
the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any
particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages
howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is
not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to
result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to
use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International
Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Number: SC136640

Copyright © 2010 Future Technology Devices International Limited 93

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

8 Appendix A - Type Definitions

UCHAR Unsigned char (1 byte)

e)

PUCHAR Pointer to unsigned char (4 bytes)
PCHAR Pointer to char (4 bytes)

DWORD Unsigned long (4 bytes)

LPDWORD Pointer to unsigned long (4 bytes)
FT_HANDLE DWORD

FT_STATUS (DWORD)
FT_OK =0
FT_INVALID_HANDLE = 1
FT_DEVICE_NOT_FOUND = 2
FT_DEVICE_NOT_OPENED = 3
FT_IO_ERROR = 4
FT_INSUFFICIENT_RESOURCES = 5
FT_INVALID_PARAMETER = 6
FT_INVALID_BAUD_RATE = 7
FT_DEVICE_NOT_OPENED_FOR_ERASE = 8
FT_DEVICE_NOT_OPENED_FOR_WRITE = 9
FT_FAILED_TO_WRITE_DEVICE = 10
FT_EEPROM_READ_FAILED = 11
FT_EEPROM_WRITE_FAILED = 12
FT_EEPROM_ERASE_FAILED = 13
FT_EEPROM_NOT_PRESENT = 14
FT_EEPROM_NOT_PROGRAMMED = 15
FT_INVALID_ARGS = 16
FT_NOT_SUPPORTED = 17
FT_OTHER_ERROR = 18

Flags (see FT_ListDevices)
FT_LIST_NUMBER_ONLY = 0x80000000
FT_LIST_BY_INDEX = 0x40000000
FT_LIST_ALL = 0x20000000

Flags (see FT_OpenEx)
FT_OPEN_BY_SERIAL_NUMBER =1
FT_OPEN_BY_DESCRIPTION = 2
FT_OPEN_BY_LOCATION = 4

FT_DEVICE (DWORD)
FT_DEVICE_232BM = 0
FT_DEVICE_232AM = 1
FT_DEVICE_100AX = 2
FT_DEVICE_UNKNOWN = 3
FT_DEVICE_2232C = 4
FT_DEVICE_232R = 5

Word Length (see FT_SetDataCharacteristics)
FT_BITS_8 =8
FT_BITS_7 =7

Stop Bits (see FT_SetDataCharacteristics)
FT_STOP_BITS_1 =0
FT_STOP_BITS_2 =2

Parity (see FT_SetDataCharacteristics)
FT_PARITY_NONE =0

Copyright © 2010 Future Technology Devices International Limited 94

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

FT_PARITY_ODD =1
FT_PARITY_EVEN = 2
FT_PARITY_MARK = 3
FT_PARITY_SPACE = 4

Flow Control (see FT_SetFlowControl)
FT_FLOW_NONE = 0x0000
FT_FLOW_RTS_CTS = 0x0100
FT_FLOW_DTR_DSR = 0x0200
FT_FLOW_XON_XOFF = 0x0400

Purge RX and TX Buffers (see FT_Purge)
FT_PURGE_RX =1
FT_PURGE_TX = 2

Notification Events (see FT_SetEventNotification)
FT_EVENT_RXCHAR =1
FT_EVENT_MODEM_STATUS = 2
FT_EVENT_LINE_STATUS = 4

Modem Status (see

FT_GetModemStatus)
CTS = 0x10
DSR = 0x20
RI = 0x40
DCD = 0x80

Line Status (see

FT_GetModemStatus)

OE = 0x02
PE = 0x04
FE = 0x08
BI = 0x10

Bit Modes (see FT_SetBitMode)
Reset = 0x00
Asynchronous Bit-Bang = 0x01
MPSSE = 0x02
Synchronous Bit-Bang = 0x04
MCU Host Bus Emulation = 0x08
Fast Opto-Isolated Serial Mode = 0x10
CBUS Bit-Bang = 0x20

FT232R CBUS EEPROM OPTIONS - Ignored for FT245R (see FT_EE_Program and FT_EE_Read)
CBUS_TXDEN = 0x00
CBUS_PWRON = 0x01
CBUS_RXLED = 0x02
CBUS_TXLED = 0x03
CBUS_TXRXLED = 0x04
CBUS_SLEEP = 0x05
CBUS_CLK48 = 0x06
CBUS_CLK24 = 0x07
CBUS_CLK12 = 0x08
CBUS_CLK6 = 0x09

Copyright © 2010 Future Technology Devices International Limited 95

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

CBUS_IOMODE = 0x0A
CBUS_BITBANG_WR = 0x0B
CBUS_BITBANG_RD = 0x0C

FT_DEVICE_LIST_INFO_NODE (see FT_GetDevicelnfolList and FT_GetDevicelnfoDetail)
typedef struct _ft_device_list_info_node {

DWORD Flags;

DWORD Type;

DWORD ID;

DWORD Locld;

char SerialNumber[16];

char Description[64];

FT_HANDLE ftHandle;
} FT_DEVICE_LIST_INFO_NODE;

FT_FLAGS (see FT_DEVICE LIST INFO NODE)
FT_FLAGS_OPENED = 0x00000001

FT_PROGRAM_DATA_STRUCTURE

typedef struct ft_program_data {
DWORD Signaturel; // Header - must be 0x0000000
DWORD Signature2; // Header - must be Oxffffffff

DWORD Version; // Header - FT_PROGRAM_DATA version
// 0 = original
// 1 = FT2232C extensions
// 2 = FT232R extensions
WORD Vendorld; // 0x0403
WORD Productld; // 0x6001
char *Manufacturer; // "FTDI"
char *Manufacturerld; // "FT"
char *Description; // "USB HS Serial Converter"
char *SerialNumber; // "FT000001" if fixed, or NULL
WORD MaxPower; // 0 < MaxPower <= 500
WORD PnP; // 0 = disabled, 1 = enabled
WORD SelfPowered; // 0 = bus powered, 1 = self powered
WORD RemoteWakeup;// 0 = not capable, 1 = capable
/!
// Rev4 (FT232B) extensions
/!
UCHAR Rev4; // non-zero if Rev4 chip, zero otherwise
UCHAR Isoln; // non-zero if in endpoint is isochronous
UCHAR IsoOut; // non-zero if out endpoint is isochronous
UCHAR PullDownEnable; // non-zero if pull down enabled

UCHAR SerNumEnable; // non-zero if serial number to be used
UCHAR USBVersionEnable; // non-zero if chip uses USBVersion

WORD USBVersion; // BCD (0x0200 => USB2)

/!

// Rev 5 (FT2232) extensions

/!

UCHAR Rev5; // non-zero if Rev5 chip, zero otherwise
UCHAR IsoInA; // non-zero if in endpoint is isochronous
UCHAR IsolnB; // non-zero if in endpoint is isochronous
UCHAR IsoOutA; // non-zero if out endpoint is isochronous
UCHAR IsoOutB; // non-zero if out endpoint is isochronous
UCHAR PullDownEnable5; // non-zero if pull down enabled

UCHAR SerNumEnable5; // non-zero if serial number to be used
UCHAR USBVersionEnable5; // non-zero if chip uses USBVersion
WORD USBVersion5; // BCD (0x0200 => USB2)

UCHAR AlsHighCurrent; // non-zero if interface is high current
UCHAR BIsHighCurrent; // non-zero if interface is high current
UCHAR IFAIsFifo; // non-zero if interface is 245 FIFO
UCHAR IFAIsFifoTar; // non-zero if interface is 245 FIFO CPU target
UCHAR IFAIsFastSer; // non-zero if interface is Fast serial

Copyright © 2010 Future Technology Devices International Limited 96

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

UCHAR AIsVCP; // non-zero if interface is to use VCP drivers
UCHAR IFBIsFifo; // non-zero if interface is 245 FIFO
UCHAR IFBIsFifoTar; // non-zero if interface is 245 FIFO CPU target
UCHAR IFBIsFastSer; // non-zero if interface is Fast serial
UCHAR BIsVCP; // non-zero if interface is to use VCP drivers
/!

// Rev 6 (FT232R) extensions

/!

UCHAR UseExtOsc; // Use External Oscillator

UCHAR HighDrivelOs; // High Drive I/0s

UCHAR EndpointSize; // Endpoint size

UCHAR PullDownEnableR; // non-zero if pull down enabled
UCHAR SerNumEnableR; // non-zero if serial number to be used
UCHAR InvertTXD; // non-zero if invert TXD

UCHAR InvertRXD; // non-zero if invert RXD

UCHAR InvertRTS; // non-zero if invert RTS

UCHAR InvertCTS; // non-zero if invert CTS

UCHAR InvertDTR; // non-zero if invert DTR

UCHAR InvertDSR; // non-zero if invert DSR

UCHAR InvertDCD; // non-zero if invert DCD

UCHAR InvertRI; // non-zero if invert RI

UCHAR Cbus0; // Cbus Mux control

UCHAR Cbus1; // Cbus Mux control

UCHAR Cbus2; // Cbus Mux control

UCHAR Cbus3; // Cbus Mux control

UCHAR Cbus4; // Cbus Mux control

UCHAR RIsD2XX; // non-zero if using D2XX driver

} FT_PROGRAM_DATA, *PFT_PROGRAM_DATA;

Win32

OPEN_EXISTING = 3
FILE_ATTRIBUTE_NORMAL = 0x00000080
FILE_FLAG_OVERLAPPED = 0x40000000
GENERIC_READ = 0x80000000
GENERIC_WRITE = 0x40000000

OVERLAPPED structure
typedef struct _OVERLAPPED {
ULONG_PTR Internal;
ULONG_PTR InternalHigh;
union {
struct {
DWORD Offset;
DWORD OffsetHigh;
3
PVOID Pointer;
b
HANDLE hEvent;
} OVERLAPPED, *LPOVERLAPPED;

CLRDTR = 6 - Clear the DTR signal
CLRRTS = 4 - Clear the RTS signal

SETDTR = 5 - Set the DTR signal

SETRTS = 3 - Set the RTS signal
SETBREAK = 8 - Set the BREAK condition
CLRBREAK = 9 - Clear the BREAK condition

MS_CTS_ON = 0x0010 - Clear To Send (CTS) is on
MS_DSR_ON = 0x0020 - Data Set Ready (DSR) is on

Copyright © 2010 Future Technology Devices International Limited 97

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

MS_RING_ON = 0x0040 - Ring Indicator (RI) is on
MS_RLSD_ON = 0x0080 - Receive Line Signal Detect (RLSD) is on

FTDCB structure
typedef struct _FTDCB {
DWORD DCBlength; // sizeof(FTDCB)
DWORD BaudRate; // Baud rate at which running
DWORD fBinary: 1; // Binary Mode (skip EOF check)
DWORD fParity: 1; // Enable parity checking
DWORD fOutxCtsFlow:1; // CTS handshaking on output
DWORD fOutxDsrFlow:1; // DSR handshaking on output
DWORD fDtrControl:2; // DTR Flow control
DWORD fDsrSensitivity:1; // DSR Sensitivity
DWORD fTXContinueOnXoff: 1; // Continue TX when Xoff sent
DWORD fOutX: 1; // Enable output X-ON/X-OFF
DWORD fInX: 1; // Enable input X-ON/X-OFF
DWORD fErrorChar: 1; // Enable Err Replacement
DWORD fNull: 1; // Enable Null stripping
DWORD fRtsControl:2; // Rts Flow control
DWORD fAbortOnError:1; // Abort all reads and writes on Error
DWORD fDummy2:17; // Reserved
WORD wReserved; // Not currently used
WORD XonLim; // Transmit X-ON threshold
WORD XoffLim; // Transmit X-OFF threshold
BYTE ByteSize; // Number of bits/byte, 7-8
BYTE Parity; // 0-4=None,0dd,Even,Mark,Space
BYTE StopBits; // 0,2 =1, 2
char XonChar; // Tx and Rx X-ON character
char XoffChar; // Tx and Rx X-OFF character
char ErrorChar; // Error replacement char
char EofChar; // End of Input character
char EvtChar; // Received Event character
WORD wReservedl; // Fill
} FTDCB, *LPFTDCB;

FTTIMEOUTS structure

typedef struct _FTTIMEOUTS {
DWORD ReadIntervalTimeout; // Maximum time between read chars
DWORD ReadTotalTimeoutMultiplier; // Multiplier of characters
DWORD ReadTotalTimeoutConstant; // Constant in milliseconds
DWORD WriteTotalTimeoutMultiplier; // Multiplier of characters
DWORD WriteTotalTimeoutConstant; // Constant in milliseconds

} FTTIMEOUTS, *LPFTTIMEOUTS;

EV_BREAK = 0x0040 - BREAK condition detected

EV_CTS = 0x0008 - Change in Clear To Send (CTS)

EV_DSR = 0x0010 - Change in Data Set Ready (DSR)

EV_ERR = 0x0080 - Error in line status

EV_RING = 0x0100 - Change in Ring Indicator (RI)

EV_RLSD = 0x0020 - Change in Receive Line Signal Detect (RLSD)
EV_RXCHAR = 0x0001 - Character received

EV_RXFLAG = 0x0002 - Event character received

EV_TXEMPTY = 0x0004 - Transmitter empty

PURGE_TXABORT = 0x0001 - Terminate outstanding overlapped writes
PURGE_RXABORT = 0x0002 - Terminate outstanding overlapped reads
PURGE_TXCLEAR = 0x0004 - Clear the transmit buffer
PURGE_RXCLEAR = 0x0008 - Clear the receive buffer

FTCOMSTAT structure
typedef struct _FTCOMSTAT {
DWORD fCtsHold : 1;

Copyright © 2010 Future Technology Devices International Limited 98

FTDI Document Reference No.: FT_000071
. D2XX Programmer's Guide Version 1.03
Chip

Clearance No.: FTDI#170

DWORD fDsrHold : 1;
DWORD fRIsdHold : 1;
DWORD fXoffHold : 1;
DWORD fXoffSent : 1;
DWORD fEof : 1;
DWORD fTxim : 1;
DWORD fReserved : 25;
DWORD cbInQue;
DWORD cbOutQue;

} FTCOMSTAT, *LPFTCOMSTAT,;

Copyright © 2010 Future Technology Devices International Limited 99

Document Reference No.: FT_000071
D2XX Programmer's Guide Version 1.03
Clearance No.: FTDI#170

9 Appendix B - Revision History

Revision History

Version 1.00 Initial release in new format.

Includes all functions in CDM driver 2.04.06 August, 2008
Version 1.01 Includes FT4232H and FT2232H

Updated addresses. January, 2009
Version 1.02 Page 65 - removed FT232R and FT245R

reference from MCU host emulation and

Fast opto modes. January, 2010
Version 1.03 Corrected section 3.32 8" September 2010

Updated Contact details

Copyright © 2010 Future Technology Devices International Limited 100

