The FTDI FT900 32 bit MCU series, provides for high data rate, computationally intensive data transfers. One of the interfaces used for this high speed communication is Ethernet. This application note discusses some of the key features of an Ethernet link and how the FT900 assists in establishing the link.
Table of Contents

1 Introduction ... 3
 1.1 Scope ... 3

2 What is Ethernet? .. 4
 2.1 Speeds ... 4
 2.2 Connections ... 5
 2.2.1 The Ethernet Media Access Controller (MAC) ... 5
 2.2.2 The Ethernet Physical Layer (PHY) ... 5
 2.2.3 Magnetics .. 5
 2.2.4 RJ45 connector .. 5
 2.2.5 FTDI MCU Ethernet Connections ... 6
 2.3 Addressing ... 7
 2.3.1 MAC Address ... 7
 2.3.2 IP Address ... 7

2.4 Network Control .. 8
 2.4.1 CSMA/CD .. 8
 2.4.2 Hub ... 8
 2.4.3 Bridges and Switches ... 8
 2.4.4 Collision and Broadcast Domains ... 8

2.5 Ethernet Frame .. 10

3 Protocols ... 11
 3.1 Transmission Control Protocol / Internet Protocol (TCP/IP) .. 11
 3.2 User Datagram Protocol (UDP) .. 11

4 FT900 Ethernet Controller .. 12

5 Contact Information ... 13

Appendix A – References ... 14
 Document References .. 14
 FT900 Datasheet ... 14
 Acronyms and Abbreviations ... 14

Appendix B – List of Tables & Figures ... 15
1 Introduction

The FTDI FT900, 32 bit MCU series, provides for high data rate, computationally intensive data transfers. The devices contain a variety of high speed interfaces including Ethernet, CAN BUS, Camera I/F, DACs and ADCs. This document will explore the details of an Ethernet link.

1.1 Scope

This application note discusses some of the key features of an Ethernet link and how the FT900 assists in establishing the link.
2 What is Ethernet?

Ethernet is a full duplex serial data protocol over twisted pair wires (or wireless). The data may be transmitted to many devices over a network or peer to peer.

FTDI FT900 MCU supports full-duplex and half-duplex modes.

- CSMA/CD protocol for half-duplex operation.
- IEEE 802.3x flow control for full-duplex operation.

2.1 Speeds

Currently there are 3 main speed variants for Ethernet traffic:

- 10Base-T: 10 Mbit/s
- 100Base-TX: 100 Mbit/s also referred to as fast Ethernet.
- 1000Base-T: 1GBit/s also referred to as gigabit Ethernet

FTDI FT900 MCU supports 10/100 Mbit/s transfer speeds.
2.2 Connections

The MAC and PHY blocks are onchip on the FT900.

![Figure 2.1 Ethernet Link](image)

2.2.1 The Ethernet Media Access Controller (MAC)

The Ethernet media access controller is responsible for managing all data packets that are to be sent and received over a network. The controller is driven by the system software and handles all the addressing and data packetizing. The controller connects directly with the PHY.

With the FT900, the link is established via a Media Independent Interface (MII), which is an internal 4-bit wide bi-directional bus (4 transmit data bits, 4 receive data bits).

2.2.2 The Ethernet Physical Layer (PHY)

The Ethernet Physical Layer (PHY) is responsible for the physical link between the Ethernet controller and the network.

This layer is onchip on the FT900 so only the differential signals are available at pin level.

2.2.3 Magnetics

The magnetics allow different nodes on the Ethernet network to connect over long distances. It removes any connection issues created by different ground offsets at different nodes.

![Figure 2.2 Magnetics](image)

The turns ratio on the coils is typically 1:1.

2.2.4 RJ45 connector

The RJ45 connector is a standard connector format for Ethernet link. It allows for a similar approach to cabling up USB, whereby standard connectors, with a standard pinout are used at each node.
2.2.5 FTDI FT900 Ethernet Connections

2.2.5.1 RXIP
Ethernet receive data input positive. Differential received signal pair.

2.2.5.2 RXIN
Ethernet receive data input negative. Differential received signal pair.

2.2.5.3 TXOP
Ethernet transmit data output positive. Differential transmitted signal pair.

2.2.5.4 TXON
Ethernet transmit data output negative. Differential transmitted signal pair.

2.2.5.5 RREFSET
Ethernet reference voltage input. Connect 12.3Kohm +/- 1% resistor to GND.

2.2.5.6 ENET_LED0
Ethernet activity indicator LED 0. The source can be configured via the Ethernet PHY Miscellaneous Configuration Register.

2.2.5.7 ENET_LED1
Ethernet activity indicator LED 1. The source can be configured via the Ethernet PHY Miscellaneous Configuration Register.

Table 2-1 RJ45 Female Connector Pinout

<table>
<thead>
<tr>
<th>PIN</th>
<th>10Base-T Signal</th>
<th>100Base-T Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>TX+</td>
</tr>
<tr>
<td>2</td>
<td>TX-</td>
<td>TX-</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>RX+</td>
</tr>
<tr>
<td>4</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>5</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>6</td>
<td>RX-</td>
<td>RX-</td>
</tr>
<tr>
<td>7</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
<td>nc</td>
</tr>
</tbody>
</table>
2.3 Addressing

2.3.1 MAC Address
Every Ethernet controller has a unique MAC address to ensure it can be independently identified. The MAC address is 6 bytes in length with the first 3 bytes identifying the Ethernet controller manufacturer. These 3 bytes are controlled and issued by the IEEE Registration Authority.

The format of the MAC address is: MM::MM::MM::SS::SS::SS

MM identifies the manufacturer. For example, A0-48-1C is Hewlett Packard.
SS identifies a device serial number and is a unique number. There are 2^{24} combinations.

The MAC address on FTDI FT900 MCU is programmable.

2.3.2 IP Address
The IP address assigned to a device is used to identify it on a TCP/IP network. As with the MAC address different elements have specific meaning. The basic format is for a 32 bit number split into 4 octets (1 octet = 1 byte) and typically displayed as a series of decimal numbers from 0-255, e.g. 192.168.0.1 is commonly used for accessing Wi-Fi router configuration pages.

The first 8 bits define a network class, while the remaining elements define the host within the network.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Leading Bit values</th>
<th>Start address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Usually reserved for government agencies and large companies</td>
<td>0</td>
<td>0.0.0.0 (00000000.x.x.x)</td>
</tr>
<tr>
<td>Loopback</td>
<td>Loopback address. The host computer can send a message back to itself</td>
<td>0111 1111</td>
<td>127.0.0.1 (01111111.0.0.1)</td>
</tr>
<tr>
<td>B</td>
<td>Used for medium-sized networks</td>
<td>10</td>
<td>128.0.0.0 (10000000.x.x.x)</td>
</tr>
<tr>
<td>C</td>
<td>Commonly used for small to mid-size networks</td>
<td>110</td>
<td>192.0.0.0 (11000000.x.x.x)</td>
</tr>
<tr>
<td>D</td>
<td>Used for multicasts</td>
<td>1110</td>
<td>224.0.0.0 (11100000.x.x.x)</td>
</tr>
<tr>
<td>E</td>
<td>Used for experimental purposes only</td>
<td>1111</td>
<td>240.0.0.0</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Messages that are intended for all computers on a network</td>
<td>11111111</td>
<td>255.255.255.255</td>
</tr>
</tbody>
</table>

Table 2-2 IP Classes
2.4 Network Control

2.4.1 CSMA/CD
Ethernet protocol regulates communication among nodes via Carrier Sense Multiple Access / Collision Detect (CSMA / CD) which is required as multiple devices can be connected on the same wires. To allow for successful communication, each node ‘listens’ to determine if the network is busy before establishing a link. It also listens to its own message while transmitting and can detect if another node started transmitting at the same time since the message would not match what was sent.

When nodes detect a collision, they stop transmission, wait for a random amount of time and attempt to retransmit when the network is ready ie no other transmissions.

2.4.2 Hub
An Ethernet hub is a device for connecting multiple Ethernet devices together and making them act as a single network segment.

2.4.3 Bridges and Switches
To avoid congestion problems as networks increase in size, network switches and bridges can be added which can filter or repeat messages from multiple segments with the goal of reducing unnecessary traffic in a particular segment. It does this by examining the destination address of the frame before deciding how to handle it.

In the figure below, if A transmits to B, the bridge receives the message and blocks or filters it from segment 2. If A transmits to C, the bridge will transmit or forward the frame to segment 2.

2.4.4 Collision and Broadcast Domains
A collision domain is a part of a network where packet collisions can occur. A collision occurs when two devices send a packet at the same time on the shared network segment. The packets collide and both devices must send the packets again, which reduces network efficiency. Collisions are often in a hub environment, because each port on a hub is in the same collision domain. By contrast, each port on a bridge, a switch or a router is in a separate collision domain.

A broadcast domain is a domain in which a broadcast is forwarded. A broadcast domain contains all devices that can reach each other at the data link layer by using broadcast. All ports on a hub or a switch are by default in the same broadcast domain. All ports on a router are in the different broadcast domains and routers don't forward broadcasts from one broadcast domain to another.

The table below shows what effect a collision and broadcast domain on each device has.

<table>
<thead>
<tr>
<th></th>
<th>Collision Domain</th>
<th>Broadcast Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Hub</td>
<td>Continues</td>
<td>Continues</td>
</tr>
<tr>
<td>Ethernet Switch / Bridge</td>
<td>Ends</td>
<td>Continues</td>
</tr>
<tr>
<td>Router</td>
<td>Ends</td>
<td>Ends</td>
</tr>
<tr>
<td>Firewall</td>
<td>Ends</td>
<td>Ends</td>
</tr>
</tbody>
</table>

Table 2-3 Collision and Broadcast Domains

The figure below shows an example network. Note that Segment 1 and Segment 2 are on two separate collision domains because of the Bridge / Switch.
Figure 2.3 Ethernet Network Example
2.5 Ethernet Frame

A data packet on an Ethernet link transports an Ethernet frame.

The internal structure of an Ethernet frame is specified in IEEE 802.3-2012.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Preamble</th>
<th>Start of Frame Delimiter</th>
<th>MAC Dest.</th>
<th>MAC Source</th>
<th>802.1Q Tag (optional)</th>
<th>Length</th>
<th>Payload</th>
<th>Frame Check (32 bit CRC)</th>
<th>Interpacket Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>7 octets</td>
<td>1 octet</td>
<td>6 octets</td>
<td>4 octets</td>
<td>2 octets</td>
<td>1500 octets max</td>
<td>4 octets</td>
<td>12 octets</td>
<td></td>
</tr>
<tr>
<td>Layer 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-4 Ethernet Frame Structure

The table below describes the frame entries.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Consists of a pattern of alternating 1 and 0 bits, which allows devices on the network to easily detect a new incoming frame</td>
</tr>
<tr>
<td>Start of Frame Delimiter</td>
<td>Marks the end of the preamble</td>
</tr>
<tr>
<td>MAC Destination</td>
<td>Destination MAC address</td>
</tr>
<tr>
<td>MAC Source</td>
<td>Source MAC address</td>
</tr>
<tr>
<td>Length</td>
<td>Indicates the size of the payload</td>
</tr>
<tr>
<td>Payload</td>
<td>The minimum payload is 42 octets when an 802.1Q tag is present and 46 octets when absent. The maximum payload is 1500 octets.</td>
</tr>
<tr>
<td>Frame Check</td>
<td>32 bit CRC which allows detection of corrupted data within the entire frame.</td>
</tr>
<tr>
<td>Interpacket gap</td>
<td>Idle state time between packets.</td>
</tr>
</tbody>
</table>

Table 2-5 Ethernet Frame Field Description
3 Protocols

The Ethernet protocol specifies a set of rules for constructing frames, as discussed in the previous section.

The transport layer is responsible for delivering data and establishes the concept of the port which is associated with an IP address of the host, as well as the type of protocol used for communication. The protocols that primarily use ports are discussed in this section. The table below gives an idea of port number and associated functionality.

<table>
<thead>
<tr>
<th>Port Range</th>
<th>Port Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1023</td>
<td>Common, well-known services</td>
</tr>
<tr>
<td>1024-49151</td>
<td>Registered ports used for Internet Assigned Numbers Authority (IANA)-registered services</td>
</tr>
<tr>
<td>49152-65535</td>
<td>Can be used for any purpose</td>
</tr>
</tbody>
</table>

Table 3-1 Ethernet Port Functionality

3.1 Transmission Control Protocol / Internet Protocol (TCP/IP)

TCP is a connection-oriented protocol like a datastream and is used for many application layer protocols, including HTTP web browsing and email transfer.

TCP is the more complex Internet Protocol incorporating reliable transmission and data stream services with flow and congestion control. It can detect network problems such as lost or duplicated and request re-transmission, and re-arrange out-of-order packets. Handshaking and acknowledgement is performed between nodes.

The TCP header consists of:
- Source / Destination Port numbers
- Sequence Number
- Acknowledgement Number
- Header Size
- Control Flags
- Window Size
- Checksum for data integrity

Applications include web browsers, email, FTP and peer-to-peer file sharing.

3.2 User Datagram Protocol (UDP)

UDP is known as a connection-less protocol, where no prior communications is required to set up transmission channels or data paths.

The delivery, arrival time, and order of arrival are not guaranteed by the network.

UDP is generally used for simpler messaging transmissions with less reliability and typically gives higher throughput and shorter latency.

The UDP header consists of
- Source / Destination Port numbers
- Data Length
- Checksum for data integrity

Applications include Voice Over IP, streaming media applications and online games.
4 FT900 Ethernet Controller

The FT900 contains an Ethernet media access controller and PHY capable of supporting Ethernet protocols up to and including 10/100Base-TX. The controller is compatible with the IEEE 802.3-2002 specification and connects directly to the magnetics and RJ45. Using the FT900 solution will provide users with access to fast Ethernet data channels and bridge to other fast interfaces supplied in the device such as the parallel camera interface or CAN bus controllers to enable a wide variety of peripherals to be accessed via Ethernet.

Additionally the FT900 Ethernet Controller supports double buffering for 2kB TX and 2kB RX memory, and promiscuous mode support to allow network activity to be monitored.
5 Contact Information

Head Office – Glasgow, UK
Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758
E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Tigard, Oregon, USA
Future Technology Devices International Limited
(USA)
7130 SW Fir Loop
Tigard, OR 97223-8160
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987
E-mail (Sales) us.sales@ftdichip.com
E-mail (Support) us.support@ftdichip.com
E-mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Taipei, Taiwan
Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576
E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Shanghai, China
Future Technology Devices International Limited
(China)
Room 1103, No. 666 West Huaihai Road,
Shanghai, 200052
China
Tel: +86 21 62351596
Fax: +86 21 62351595
E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site
http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level performance requirements. All application-related information in this document (including application descriptions, suggested FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user's risk, and the user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640
Appendix A – References

Document References

FT900 Datasheet

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Media Access Controller</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>MCU</td>
<td>Micro Controller Unit</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>CSMA</td>
<td>Carrier Sense Multiple Access</td>
</tr>
<tr>
<td>CD</td>
<td>Collision Detection</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/IP</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>Mbit/s</td>
<td>Network transfer speed Mega bits per second</td>
</tr>
<tr>
<td>MII</td>
<td>Media Independent Interface</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>TX</td>
<td>Transmit</td>
</tr>
<tr>
<td>RX</td>
<td>Receive</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Wireless Fidelity</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
</tbody>
</table>
Appendix B – List of Tables & Figures

List of Tables
Table 2-1 RJ45 Female Connector Pinout ... 6
Table 2-2 IP Classes ... 7
Table 2-3 Collision and Broadcast Domains ... 8
Table 2-4 Ethernet Frame Structure ... 10
Table 2-5 Ethernet Frame Field Description ... 10
Table 3-1 Ethernet Port Functionality ... 11

List of Figures
Figure 2.1 Ethernet Link ... 5
Figure 2.2 Magnetics ... 5
Figure 2.3 Ethernet Network Example ... 9
Appendix C – Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Draft</td>
<td>2014-08-13</td>
</tr>
<tr>
<td>1.0</td>
<td>Version Release</td>
<td>2015-03-23</td>
</tr>
</tbody>
</table>